Human Phys PCB4701

Autonomic Nervous System Fox Chapter 9 part 1

© T. Houpt, Ph.D.

Anatomy and Neurochemistry of Autonomic Nervous System

Pharmacology and Disorders of Autonomic Nervous System

Table 9.1 Comparison of the Somatic Motor System and the Autonomic Motor System

Feature	Somatic Motor	Autonomic Motor
Effector organs	Skeletal muscles	Cardiac muscle, smooth muscle, and glands
Presence of ganglia	No ganglia	Cell bodies of postganglionic autonomic fibers located in paravertebral, prevertebral (collateral), and terminal ganglia
Number of neurons from CNS to effector	One	Тwo
Type of neuromuscular junction	Specialized motor end plate	No specialization of postsynaptic membrane; all areas of smooth muscle cells contain receptor proteins for neurotransmitters
Effect of nerve impulse on muscle	Excitatory only	Either excitatory or inhibitory
Type of nerve fibers	Fast-conducting, thick (9–13µm), and myelinated	Slow-conducting; preganglionic fibers lightly myelinated but thin (3μm); postganglionic fibers unmyelinated and very thin (about 1.0μm)
Effect of denervation	Flaccid paralysis and atrophy	Muscle tone and function persist; target cells show denervation hypersensitivity

Functional hierarchy of the peripheral nervous system

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Autonomic Nervous System

Somatic Motor System (voluntary): Spinal motor neuron synapses onto target skeletal muscle

Fox Figure 12.4a

Autonomic Nervous System (involuntary):

Two-Step Projection:

- 1. Spinal/Brainstem pre-ganglionic neuron synapses onto post-ganglionic neuron
- 2. Post-ganglionic neuron synapses onto target smooth muscle
 - (e.g. in blood vessel, glands)

Sympathetic Nervous System

Nerves from spinal cord run to chain ganglia or collateral ganglia and then to glands and smooth muscle

mobilize energy divert blood to muscle prepare to fight/flee

"Fight or Flight"

Parasympathetic Nervous System

Nerves from brainstem and spinal cord run to glands and smooth muscle

Prepare for digestion, energy storage, divert blood flow to gut.

opposite effect of sympathetic NS (in most cases)

"Rest and Digest"

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Comparison of Skeletal Muscle and Smooth Muscle

Skeletal Muscle	Smooth Muscle
Striated; actin and myosin arranged in sarcomeres	Not striated; more actin than myosin; actin inserts into dense bodies and cell membrane
Well-developed sarcoplasmic reticulum and transverse tubules	Poorly developed sarcoplasmic reticulum; no transverse tubules
Contains troponin in the thin filaments	Contains calmodulin, a protein that, when bound to Ca ²⁺ , activates the enzyme myosin light-chain kinase
Ca ²⁺ released into cytoplasm from sarcoplasmic reticulum	Ca ²⁺ enters cytoplasm from extracellular fluid, sarcoplasmic reticulum, and perhaps mitochondria
Cannot contract without nerve stimulation; denervation results in muscle atrophy	Maintains tone in absence of nerve stimulation; visceral smooth muscle produces pacemaker potentials; denervation results in hypersensitivity to stimulation
Muscle fibers stimulated independently; no gap junctions	Gap junctions generally present
attached to tendons and bones; contracts to move skeleton. receptors at neuromuscular junction	wrapped around blood vessels, GI tract, g contracts to constrict vessels or squeeze g neurotransmitter receptors all over cel

Fox Table 12.8

(C)

Sympathetic Nervous System: Anatomy

Sympathetic chain of paravertebral ganglia

- connected to spinal roots by **white ramus** (preganglionic going into ganglion) and **gray ramus** (postganglionic leaving out of ganglion)
- convergence of inputs leads to mass activation of postganglionic neurons
- postganglionic fibers join **spinal nerves**, innervate blood vessels et al. in skeletal muscles and skin.

Splanchnic Nerves

- Sympathetic preganglionic fibers below the diaphragm project to collateral ganglia
- Postganglionic fibers from collateral ganglia innervate digestive, urinary, reproductive organs

Medulla of Adrenal Gland

- modified sympathetic ganglion
- Preganglionic fibers stimulate medullary cells to secrete epinephrine and norepinephrine into the blood

Neurotransmitters

- Preganglionic nerves release Acetylcholine (ACh) to stimulate nicotinic receptors on postganglionic cells
- Postganglionic cells release Norepinephrine (NE) to stimulate or inhibit target tissues via adrenergic receptors
- There are some important exceptions: e.g. sympathetic fibers to sweat glands use ACh.
- •

ramus - Latin for branch splan - Greek for organ medulla - Latin for middle

Autonomic Nervous System Transmitters and Receptors

Acetylcholine -> Cholinergic Receptors

- Nicotinic (ligand gated Na+ channels)
- Muscarinic (G-protein-coupled receptors)

Norepinephrine -> Adrenergic Receptors

(Epinephrine from adrenal gland)

- alpha-adrenergic receptors (G-protein-coupled receptors)
- beta-adrenergic receptors (G-protein-coupled receptors)

Sympathetic Nervous System: Anatomy

Sympathetic Nervous System: Anatomy

Sympathetic Nervous System: Neurotransmitters

Figure 9.5

Sympathetic Nervous System: Neurotransmitters

Figure 9.5 NorEpi -> beta and alpha noradrenergic receptors at target organ

Table 9.3 | The Parasympathetic Division

Nerve	Origin of Preganglionic Fibers	Location of Terminal Ganglia	Effector Organs
Oculomotor (third cranial) nerve	Midbrain (cranial)	Ciliary ganglion	Eye (smooth muscle in iris and ciliary body)
Facial (seventh cranial)	Pons (cranial)	Pterygopalatine and submandibular ganglia	Lacrimal, mucous, and salivary glands
Glossopharyngeal (ninth cranial) nerve	Medulla oblongata (cranial)	Otic ganglion	Parotid gland
Vagus (tenth cranial) nerve	Medulla oblongata (cranial)	Terminal ganglia in or near organ	Heart, lungs, gastrointestinal tract, liver, pancreas
Pelvic spinal nerves	S2 to S4 (sacral)	Terminal ganglia near organs	Lower half of large intestine, rectum, urinary bladder, and reproductive organs

Parasympathetic Nervous System: Anatomy

ACh -> Nicotinic Receptors at ganglion

Parasympathetic Nervous System: Neurotransmitters

ACh -> Muscarinic Receptors at Target Organs

Parasympathetic Nervous System: Neurotransmitters

Autonomic Nervous System: Neurochemistry

- Both sympathetic and parasympathetic preganglionic neurons release ACh to stimulate nicotonic receptors on postganglionic cells nicotinic receptors are blocked by curare
- Parasympathetic postganglionic neurons release ACh onto muscarinic receptors muscarinic receptors are blocked by atropine muscanic receptors are G-protein-coupled receptors that have stimulatory or inhibitory effects on target organ, depending on the specific receptor subtype (M1-5)
- Sympathetic postganglionic neurons release NE (mostly) onto **adrenergic receptors** adrenergic receptors are G-protein-coupled receptors that have stimulatory or inhibitory effects on target organ, depending on the receptor subtype (alpha or beta) adrenergic receptors are blocked by **alpha blockers** or **beta blockers**.
- Most target organs have **dual innervation** by sympathetic and parasympathetic fibers. The effects are usually **antagonistic** (but can be complementary, or cooperative).
- Some organs receive **only sympathetic innervation**: adrenal medulla, skin (arrector pili & sweat glands), and most blood vessels.

Table 9.4 | Effects of Autonomic Nerve Stimulation on Various Effector Organs

Effector Organ	Sympathetic Effect	Parasympathetic Effect
Eye		
Iris (radial muscle)	Dilation of pupil	-
Iris (sphincter muscle)	-	Constriction of pupil
Ciliary muscle	Relaxation (for far vision)	Contraction (for near vision)
Glands		
Lacrimal (tear)	-	Stimulation of secretion
Sweat	Stimulation of secretion	-
Salivary	Saliva becomes thick	Increased secretion; saliva becomes thin
Stomach	-	Stimulation of secretion
Intestine	-	Stimulation of secretion
Adrenal medulla	Stimulation of hormone secretion	_
Heart		
Rate	Increased	Decreased
Conduction	Increased rate	Decreased rate
Strength	Increased	_
Blood Vessels	Mostly constriction; affects all organs	Dilation in a few organs (e.g., penis)
Lungs		
Bronchioles (tubes)	Dilation	Constriction
Mucous glands	Inhibition of secretion	Stimulation of secretion
Gastrointestinal Tract		
Motility	Inhibition of movement	Stimulation of movement

Table 9.4

Table 9.4 | Effects of Autonomic Nerve Stimulation on Various Effector Organs

Effector Organ	Sympathetic Effect	Parasympathetic Effect
Heart		
Rate	Increased	Decreased
Conduction	Increased rate	Decreased rate
Strength	Increased	_
Blood Vessels	Mostly constriction; affects all organs	Dilation in a few organs (e.g., penis)
Lungs		
Bronchioles (tubes)	Dilation	Constriction
Mucous glands	Inhibition of secretion	Stimulation of secretion
Gastrointestinal Tract		
Motility	Inhibition of movement	Stimulation of movement

e.g. smooth muscle of airways

e.g. smooth muscle of airways

Figure 9.9b

(b)

Autonomic Nervous System Transmitters and Receptors

Acetylcholine -> Cholinergic Receptors

- Nicotinic (ligand gated Na+ channels)
- Muscarinic (G-protein-coupled receptors)

Norepinephrine -> Adrenergic Receptors

(Epinephrine from adrenal gland)

- alpha-adrenergic receptors (G-protein-coupled receptors)
- beta-adrenergic receptors (G-protein-coupled receptors)

Terminology:

Table 9.6 Cholinergic Receptors and Responses to Acetylcholine

Receptor	Tissue	Response	Mechanisms
Nicotinic	Skeletal muscle	Depolarization, producing action potentials and muscle contraction	ACh opens cation channel in receptor
Nicotinic	Autonomic ganglia	Depolarization, causing activation of postganglionic neurons	ACh opens cation channel in receptor
Muscarinic (M_3 , M_5)	Smooth muscle, glands	Depolarization and contraction of smooth muscle, secretion of glands	ACh activates G-protein coupled receptor, opening Ca ²⁺ channels and increasing cytosolic Ca ²⁺
Muscarinic (M ₂)	Heart	Hyperpolarization, slowing rate of spontaneous depolarization	ACh activates G-protein coupled receptor, opening channels for $K^{\scriptscriptstyle +}$

Source: Simplified from table 6-2, p. 119 of Goodman and Gilman's The Pharmacological Basis of Therapeutics. Ninth edition. J.E. Hardman et al., eds. 1996 and table 6-3, p. 156 of the Eleventh edition, 2006. McGraw-Hill.

Epinephrine (Adrenalin) secreted from Adrenal Gland & Autonomic Neurons during stress (one NT -> multiple effects)

G-Proteins can affect second messenger signaling (e.g. cAMP levels in the cytoplasm)

Fox Figure 7.31

Table 9.5

Table 9.5 Selected Adrenergic Effects in Different Organs

Organ	Adrenergic Effects of Sympathoadrenal System		rgic Rece	ptor
Еуе	Contraction of radial fibers of the iris dilates the pupils	alpha₁		
Heart	Increase in heart rate and contraction strength	beta₁		
Skin and visceral vessels	Arterioles constrict due to smooth muscle contraction	alpha ₁		
Skeletal muscle vessels	Arterioles constrict due to sympathetic nerve activity	alpha ₁		
	Arterioles dilate due to hormone epinephrine	beta ₂		
Lungs	Bronchioles (airways) dilate due to smooth muscle relaxation	beta ₂		
Stomach and intestine	Contraction of sphincters slows passage of food	alpha₁		
Liver	Glycogenolysis and secretion of glucose	alpha ₁	beta ₂	

Source: Simplified from table 6-1, pp. 110–111, of Goodman and Gilman's The Pharmacological Basis of Therapeutics. Ninth edition. J.E. Hardman et al., eds. 1996. McGraw-Hill.

	Effect of			
	Sympathe	tic	Parasympathe	tic
Organ	Action	Receptor*	Action	Receptor*
Eye				
Iris				
Radial muscle	Contracts	α ₁	_	-
Circular muscle	_	-	Contracts	М
Heart				
Sinoatrial node	Accelerates	β ₁	Decelerates	М
Contractility	Increases	β ₁	Decreases (atria)	М

Table 9.7 Adrenergic and Cholinergic Effects of Sympathetic and Parasympathetic Nerves

	Effect of			
	Sympathe	tic	Parasympath	netic
Organ	Action	Receptor	Action	Receptor*
Vascular Smooth Muscle				
Skin, splanchnic vessels	Contracts	α,β	-	_
Skeletal muscle vessels	Relaxes	β2	-	_
	Relaxes	M**	-	-
Bronchiolar Smooth Muscle	Relaxes	β2	Contracts	М
Gastrointestinal Tract				
Smooth muscle				
Walls	Relaxes	β ₂	Contracts	М
Sphincters	Constricts	α_1	Relaxes	М
Secretion	Decreases	α ₁	Increases	М
Myenteric plexus	Inhibits	α_1	-	-

Table 9.7 Adrenergic and Cholinergic Effects of Sympathetic and Parasympathetic Nerves

Be able to compare and contrast sympathetic and parasympathetic nervous system

Location of preganglion neurons

Location of ganglia

Neurotransmitters used by pre- and post ganglionic neurons

Role of sympathetic vs. parasympathetic system

Some examples of target organs:

airways, pupil, sweating

Application	Effect of Vial 1	Effect of Vial 2
onto eye	no effect	Dilation of pupil
onto adrenal gland	epinephrine secretion	no effect
onto heart	no effect	speeds up heart
onto sweat gland	no effect	decreases sweating
into sympathetic chain ganglion	increased sympathetic response	no effect
into parasympathetic ganglion	increased parasympathetic response	no effect

т

You conclude that vial 1 or 2 contains:

- a. acetylcholine
- b. atropine
- c. cocaine
- d. epinephrine
- e. nicotine

Application	Effect of Vial 1
onto eye muscarinic ACh (constriction) vs.	no effect
Deta-adrenergic receptors (dilation)	
onto adrenal gland nicotinic ACh receptors	epinephrine secretion
onto heart muscarinic ACh (slow) vs. beta-adrenergic receptors (speed up)	no effect
onto sweat gland muscarinic ACh receptors	no effect
into sympathetic chain ganglion nicotinic ACh receptors	increased sympathetic response
into parasympathetic ganglion nicotinic ACh receptors	increased parasympathetic response

1. You conclude that vial 1 contains:

- d. epinephrine ____ adrenergic receptors
- e. nicotine

nicotinic ACh receptors

Application	Effect of Vial 2
onto eye muscarinic ACh (constriction) vs. beta-adrenergic receptors (dilation)	Dilation of pupil
onto adrenal gland nicotinic ACh receptors	no effect
onto heart muscarinic ACh (slow) vs. beta-adrenergic receptors (speed up)	speeds up heart
onto sweat gland muscarinic ACh receptors	decreases sweating
into sympathetic chain ganglion nicotinic ACh receptors	no effect
into parasympathetic ganglion nicotinic ACh receptors	no effect

2. You conclude that vial 2 contains:

- d. epinephrine ____ adrenergic receptors
- e. nicotine **nicotinic** ACh receptors

Human Phys PCB4701

Autonomic Nervous System: Examples & Disorders Fox Chapter 9 part 2

© T. Houpt, Ph.D.

Examples of Autonomic Nervous System

Pupil dilation & contraction

Sweating

Horner's Syndrome

Organophosphate Poisoning

Central Regulation of Autonomic Nervous System

brainstem hypothalamus *example: Thermoregulation & Fever*

Pupil Dilation & Constriction

Light via optic nerve (II) stimulates parasympathetic nerve (III) to constrict pupillary sphincter muscle (ACh muscarinic receptors) Blocked by atropine -> pupil dilation Sympathetic nerves cause dilation of pupil by stimulating pupillary dilator muscle (NE beta-adrenergic receptors) Cocaine -> enhanced NE levels -> enhanced dilation

Hidrosis (sweating)

Sympathetic postganglionic neurons synapse onto sweat glands in the skin Sympathetic neurons release **ACh** (**not NE**) to stimulate sweating **Hyperhidrosis** - excessive sweating -- treated with anticholinergics, botulin toxin (botox) that blocks ACh release, or **sympathectomy** (cutting sympathetic nerves)

Horner's Syndrome

Damage to sympathetic nerves on one side of neck Unilateral (one-sided) constriction of pupil, anhydrosis (lack of sweat), flushing

Organophosphates

insecticides that block cholinesterase enzyme -> enhanced ACh neurotransmission at all synapses Treated with atropine to block effects of elevated ACh

Hyperhidrosis - Excessive sweating

Botox injections

Sweating and Hyperhidrosis

Horner's Syndrome

Loss of sympathetic innervation of the eye and face on one side (unilateral deficit)

- 1. Drooping eyelid (Ptosis)
- 2. Constricted pupil
- 3. Reduced sweating on the affected facial side

Horner' syndrome due to grenade wound of right side of neck (Bing's p. 102)

Organophosphates block degradation of ACh

© Elsevier. Costanzo: Physiology 3E www.studentconsult.com

"nerve gas" (Sarin) are AchE inhibitors. Poisoning will present with symptoms of

Activation of nicotinic ACh receptors on ganglionic synapses and neuromuscular

Activation of muscarinic ACh receptors at

(and activation of sweat glands at cholinergic sympathetic synapse).

Organophosphates are powerful (long-lasting) AChE inhibitors used as pesticides

AChE inhibitors boost ACh everywhere

Common Symptoms Associated with Organophosphate Pesticide Poisoning.

Degree of Poisoning	Symptoms
Mild	Fatigue, headache, dizziness, blurred vision, excessive sweating/salivation, nausea/vomiting, stomach cramps, and diarrhea.
Moderate	Inability to walk, weakness, chest discomfort, constriction of pupils, and mild symptoms that are more severe.
Severe	Unconsciousness, severe constriction of pupils, muscle twitching, running nose, drooling, breathing difficulty, coma, and death.

http://edis.ifas.ufl.edu/pi221

Organophosphate pesticides eyed as cause of India poisonings: How toxic?

July 2013

Some states require employers to enroll their employees who handle such pesticides in a cholinesterase-monitoring program. Although Florida law does not require employers of pesticide handlers to monitor these employee's cholinesterase levels, some employers in Florida — including the University of Florida voluntarily enroll their employees who handle pesticides in a cholinesterase-monitoring program.

The BBC quoted a police official last week who said, "It was the high quantity of monocrotophos insecticide found in the food which proved fatal for the schoolchildren." The incident has been blamed on a bottle of pesticide being used instead of cooking oil to cook the free school lunches of rice, lentils, soybeans and potatoes.

The affected children, who were between the ages of 5 and 12, got sick shortly after eating lunch Tuesday July 16 at the school in Gandamal village. School authorities stopped serving the meal once the children began vomiting. The school's principal, who went into hiding after the incident, was arrested Tuesday.

Treatment of organophosphate (OP) poisoning involves assisted ventilation, blocking muscarinic activation with atropine and attempting to reactivate AchE

- 1. Organophosphorus (OP) insecticide poisoning is a major global clinical problem, killing an estimated 200,000 people each year.
- 2. Restricting agricultural use of highly toxic OP insecticides will reduce regional suicide rates. However, current agricultural policies make it unlikely that they will soon be banned. Effective clinical therapies are required.
- 3. OP compounds inhibit acetylcholinesterase (AchE), resulting in overstimulation of cholinergic synapses. Patients die mostly from respiratory failure and lung injury, although there is variability in the clinical syndrome.
- 4. Treatment involves resuscitation, administration of the muscarinic antagonist **atropine** and an oxime **acetylcholinesterase reactivator**, such as pralidoxime, and assisted ventilation as necessary.

(Eddleston et al. PLoS Med 6(6): e1000104, 2009)