Vert Phys PCB3743

Autonomic Nervous System 2 Fox Chapter 9 part 2

Pharmacology and Disorders

© T. Houpt, Ph.D.

Examples of Autonomic Nervous System

Pupil dilation & contraction

Sweating

Horner's Syndrome

Organophosphate Poisoning

Central Regulation of Autonomic Nervous System

brainstem hypothalamus example: Thermoregulation & Fever

Т

Т

Pupil Dilation & Constriction

Light via optic nerve (II) stimulates parasympathetic nerve (III) to constrict pupillary sphincter muscle (ACh muscarinic receptors) Blocked by atropine -> pupil dilation Sympathetic nerves cause dilation of pupil by stimulating pupillary dilator muscle (NE beta-adrenergic receptors) Cocaine -> enhanced NE levels -> enhanced dilation

Hidrosis (sweating)

Sympathetic postganglionic neurons synapse onto sweat glands in the skin Sympathetic neurons release **ACh** (not **NE**) to stimulate sweating **Hyperhidrosis** - excessive sweating -- treated with anticholinergics, botulin toxin (botox) that blocks ACh release, or **sympathectomy** (cutting sympathetic nerves)

Horner's Syndrome

Damage to sympathetic nerves on one side of neck Unilateral (one-sided) constriction of pupil, anhydrosis (lack of sweat), flushing

Organophosphates

insecticides that block cholinesterase enzyme -> enhanced ACh neurotransmission at all synapses Treated with atropine to block effects of elevated ACh

Horner's Syndrome

Loss of sympathetic innervation of the eye and face on one side (unilateral deficit)

Drooping eyelid (Ptosis)
Constricted pupil

3 Reduced sweating on the affected facial side

Horner' syndrome due to grenade wound of right side of neck (Bing's p. 102)

Organophosphate pesticides eyed as cause of India poisonings: How toxic?

Some states require employers to enroll their employees who handle such pesticides in a cholinesterasemonitoring program. Although Florida law does not require employers of pesticide handlers to monitor these employee's cholinesterase levels, some employers in Florida including the University of Florida voluntarily enroll their employees who handle pesticides in a cholinesterase-monitoring program.

The **BBC** quoted a police official last week who said, "It was the high quantity of monocrotophos insecticide found in the food which proved fatal for the schoolchildren." The incident has been blamed on a bottle of pesticide being used instead of cooking oil to cook the free school lunches of rice, lentils, soybeans and potatoes.

The affected children, who were between the ages of 5 and 12, got sick shortly after eating lunch Tuesday July 16 at the school in Gandamal village. School authorities stopped serving the meal once the children began vomiting. The school's principal, who went into hiding after the incident, was arrested Tuesday.

Treatment of organophosphate (OP) poisoning involves assisted ventilation, blocking muscarinic activation with atropine and attempting to reactivate AchE

- 1. Organophosphorus (OP) insecticide poisoning is a major global clinical problem, killing an estimated 200,000 people each year.
- Restricting agricultural use of highly toxic OP insecticides will reduce regional suicide rates. However, current agricultural policies make it unlikely that they will soon be banned. Effective clinical therapies are required.
- OP compounds inhibit acetylcholinesterase (AchE), resulting in overstimulation of cholinergic synapses. Patients die mostly from respiratory failure and lung injury, although there is variability in the clinical syndrome.
- Treatment involves resuscitation, administration of the muscarinic antagonist atropine and an oxime acetylcholinesterase reactivator, such as pralidoxime, and assisted ventilation as necessary.

(Eddleston et al. PLoS Med 6(6): e1000104, 2009)

Be able to compare and contrast sympathetic and parasympathetic nervous system

Location of preganglion neurons

Location of ganglia

Neurotransmitters used by pre- and post ganglionic neurons

Role of sympathetic vs. parasympathetic system

Some examples of target organs:

airways, pupil, sweating

Application	Effect of Vial 1	Effect of Vial 2
onto eye	no effect	Dilation of pupil
onto adrenal gland	epinephrine secretion	no effect
onto heart	no effect	speeds up heart
onto sweat gland	no effect	decreases sweating
into sympathetic chain ganglion	increased sympathetic response	no effect
into parasympathetic ganglion	increased parasympathetic response	no effect

You conclude that vial 1 or 2 contains:

- a. acetylcholineb. atropinec. cocaine
- d. epinephrine
- e. nicotine

т

Application	Effect of Vial 1	
onto eye muscarinic ACh (constriction) vs. beta-adrenergic receptors (dilation)	no effect	
onto adrenal gland nicotinic ACh receptors	epinephrine secretion	
onto heart muscarinic ACh (slow) vs. beta-adrenergic receptors (speed up)	no effect	
onto sweat gland muscarinic ACh receptors	no effect	
into sympathetic chain ganglion nicotinic ACh receptors	increased sympathetic response	
into parasympathetic ganglion nicotinic ACh receptors	increased parasympathetic response	

1. You conclude that vial 1 contains:

→ muscarinic & nicotinic ACh receptors a. acetylcholine block muscarinic ACh receptors b. atropine enhance adrenergic receptors c. cocaine d. epinephrine adrenergic receptors -**~** e. nicotine nicotinic ACh receptors

Application	Effect of Vial 2	
onto eye muscarinic ACh (constriction) vs. beta-adrenergic receptors (dilation)	Dilation of pupil	
onto adrenal gland nicotinic ACh receptors	no effect	
onto heart muscarinic ACh (slow) vs. beta-adrenergic receptors (speed up)	speeds up heart	
onto sweat gland muscarinic ACh receptors	decreases sweating	
into sympathetic chain ganglion nicotinic ACh receptors	no effect	
nto parasympathetic ganglion nicotinic ACh receptors	no effect	

- muscarinic & nicotinic ACh receptors a. acetylcholine
- b. atropine block muscarinic ACh receptors
- c. cocaine enhance adrenergic receptors →
- d. epinephrine adrenergic receptors _ e. nicotine
 - nicotinic ACh receptors

Hypothalamus as Integrator

To maintain homeostasis, hypothalamus uses two control mechanisms:

1. Setpoint

areas of hypothalamus integrate information about a physiological variable, and attempt to maintain that variable at a particular setpoint.

2. Feedback loops

High levels of regulated variable cause hypothalamus to downregulate behavior & physiology that drive the variable up. negative feedback loop balances positive input; no setpoint

Т

Feedback Regulation

High levels of regulated variable cause hypothalamus to downregulate behavior & physiology that drive the variable up.

Setpoint Regulation

areas of hypothalamus integrate temperature information, and attempt to maintain temperature at a particular setpoint.

Thermoregulatory responses

engaged if:

if temperature > setpoint too hot, so sweat & vasodilate skin if temperature < setpoint too cold, so shiver & conserve heat If temperature = setpoint feel fine (even if elevated)

Compare temperature to set point:

if temperature > setpoint

too hot, so sweat & vasodilate skin

if temperature < setpoint

too cold, so shiver & conserve heat

If temperature = setpoint

feel fine (even if elevated)

Thermoregulatory Inputs

peripheral temperature sensors (e.g. skin)

central temperature sensors (warm and cold responsive neurons in hypothalamus)

hypothalamus integrates both peripheral and central inputs

Thermoregulatory Sites of integration: two opposing centers

Thermoregulatory Outputs

controlled by mixed but independent circuits localized in hypothalamus.

Short-term neural outputs:

sweating, panting, salivation: evaporative cooling

vasodilation: conduction of heat from core by blood and radiation from skin

shivering: generation of metabolic heat

- non-shivering thermogenesis: burn off adipose stores
- **Behavior!** conscious perception drives voluntary behaviors to restore temp to set point.

т

Thermoregulatory Outputs Skin vasomotor tone Nonshivering thermogenesis Shivering Central nervous system (W)POA (W)POA DMH, PVN) DMH PH W POA Hypothalamus VMH rPAG Midbrain and pons VTA)PAG)cPAG RF RRF) RPA) RPA Medulla RPA (P) IML (P) IML (Y) VH Spinal cord Peripheral nervous system (G) SG (G) SG N 65 Skin blood vessel Brown adipose tissue Skeletal muscle O neuronal body W warm-sensitive neuron P preganglionic neuron G postganglionic neuron γ-motoneuron
 Romanovsky, Am J Physiol Regul Integr Comp Physiol 292: R37-R46, 2007

Long-Term Thermoregulatory Outputs

secretion of thyroid releasing hormone (TRH) to increase thyroid hormone (TH) to increase metabolism

increased feeding to match metabolic heat generation

(autonomic system can only change metabolic rate by 4x, so need behavior to compensate for big environmental shifts).

Т

Disregulation of Body Temperature

Postsurgical shivering:

anesthesia depresses normal thermoregulatory response, body starts to cool to RT; as anesthesia wears off, hypothalamus regains function and induces shivering.

Hot flashes:

lack of estrogen causes occasional lowering of setpoint (i.e. hypothalamus decides its too hot, so tries to lower body temperature) -> sweating, perception of heat.

Fever induced by infection and pyrogens

Chemical components of bacteria activate immune system to produce prostaglandins (PGs). PGs stimulate brain to change set-point (induced fever) and "sickness syndrome".

Cytokines, Fever, and Sickness Syndrome

increased sleep, anorexia, adipsia, stress response, fever

the behavioral & physiological alterations that develop during infection are **NOT** the consequence of reduced bodily functions,

but are a set of coordinated responses to infection and inflammation mediated by the hypothalamus т

Lipopolysaccharide (LPS) & Cytokines

active fragment of endotoxin from gram-negative bacteria

LPS induces synthesis and release of proinflammatory cytokines from activated immune system cells (monocytes and macrophages):

cytokines:

interleukin 1a (IL-1a)

interleukin 1b (IL-1b)

tumor necrosis factor-alpha (TNFa)

two pathways of activation

visceral infection

- peritoneum, lung
- -> cytokine receptors on vagus nerve
- -> brainstem and hypothalamus

blood borne infection

- LPS, cytokines
- -> endothelium of brain capillaries
- -> activation of cyclooxygenase (COX2)
- -> synthesis of prostaglandin E2 (PGE2)
- -> diffuse to glial cells
- -> activation of EP3 receptors
- -> release of cAMP -> hypothalamic areas

Thermoregulation Conclusions

Temperature is regulated around a setpoint

Thermoregulation uses both peripheral and central sensors

Fever is a pathological change in setpoint

Infection causes "sickness" by indirectly affecting the hypothalamus through humoral and nervous signaling.

cytokines and prostaglandins signal the presence of infection

т