

American Physiological Society

- **Physiology** is the study of the function of the human body.
- We will go over most of the major organs and processes of the human body: the brain and nervous system, heart and lungs, hormones, and digestion.

 A key skill you will learn is how to analyze a pathway, from biological causes to bodily symptoms.

S. Sobrino-Cossío et al in Revista de Gastroenterología de México (English Edition), 2019

• Identifying cause and effect in the body is critical to diagnosing patient's diseases.

- This is NOT a biochemistry course, although we'll draw on what you've learned in your earlier chemistry courses about concentrations, pH, and some basic chemicals.
- This is NOT an anatomy course, but there will be some body parts and tissues that we have to know to understand how organs function. I will provide very explicit guides

Human Physiology PCB 4701

Course credit: 3 hours Lecture: MW 3:05pm to 4:20 pm Meeting place: HCB 0102

Professor: Dr. Tom Houpt

Email: <u>houpt@bio.fsu.edu</u> Office Hours: 2067 King Building, Thurs, noon to 2pm (or by appointment)

Teaching Assistant: Marena Bass

Email: mnb11d@bio.fsu.edu Office Hours: 3022 King Building, Friday, 3-4pm (or by appointment)

Email using your FSU-issued account! Other accounts (hotmail, google) get filtered to spam!

Textbook

Human Physiology, 13th - 16th edition, by Stuart Ira Fox

FSU course-website

Assignments, lecture outlines, handouts, and practice exams will be posted on Canvas.

Canvas & <u>http://houptlab.org/courses/humanphys</u>

Download lectures in advance!

Assignments, lecture outlines, handouts, and practice exams will be posted on Canvas.

Syllabus

Syllabus and course descripton

Course Library

Powerpoint/PDF of Lecture Slides will be posted on Canvas 1-2 days in advance

Assignments

Quizzes (1 / chapter) will be posted under Assignments, and will be completed as "on-line" quizzes. Due before each exam.

Grade Center

Grades will be posted in the Canvas grade center, although the professor has the master spreadsheet of grades.

http://houptlab.org/courses/humanphys/

Lecture recording downloads per day

Grade Determination

TopHat participation (4% of final grade)

Beginning on the third day of class, periodic quizzes or discussion points will be raised in class using Top Hat. Because these in-class questions are designed to help track your understanding of the lecture, you won't be graded on your correct/incorrect responses -- but you will get credit just for participating. Wednesday Monday September 4

Weekly Quizzes/Problem Sets (12% of final grade)

Exams (84% of final grade)

Date	% of Final Grade	Material Covered
23-Sep Monday	21%	Lectures 1-7
16-Oct Wednesday	21%	Lectures 8-13
6-Nov Wednesday	21%	Lectures 14-18
12-Dec Thursday 3pm	21%	Lectures 19-24

Grade Assignment

Grades will be assigned as follows:

Α	100-93
A-	92-90
B+	89-87
В	86-83
B-	82-80
C+	79-77
С	76-73
C-	72-70
D+	69-67
D	66-63
D-	62-60
F	59-0

No curve, but I throw out bad questions on each exam.

Human Physiology

Average = 84%

Make-Up Examinations

Any anticipated conflict with the hour examination (weddings, field trips, family obligations, etc.) must be discussed with the instructor <u>during the first week of classes</u>, so that alternate arrangements for taking the examination(s) can be made in advance. **After the first week of classes, only legitimate emergencies will be accepted as valid excuses.**

A make-up exam may be arranged if: (1) the student contacted the instructor **prior** to the examination (houpt@bio.fsu.edu) and the student documents the fact that a legitimate emergency will prevent her/him from taking the examination - -if the instructor cannot be reached, a message must be left with the departmental office at 644-3700; or (2) the student documents the fact that a legitimate emergency prevented her/him from taking the examination (for example, a written notice from the Health Center indicating the student could not take the exam on the scheduled date) and contacts the instructor within 2 days after the exam date (if the instructor cannot be reached, a message must be left with the departmental office at 644-3700). If the above conditions are not met, the student will receive a "0" for the missed examination.

University Attendance Policy

Excused absences include documented illness, deaths in the family and other documented crises, call to active military duty or jury duty, religious holy days, and official University activities.Consideration will also be given to students whose dependent children experience serious illness.

Academic Honor Policy

Students are responsible for reading the Academic Honor Policy and for living up to their pledge to "...be honest and truthful and...[to] strive for personal and institutional integrity at Florida State University." (Florida State University Academic Honor Policy, found at http://dof.fsu.edu/honorpolicy.htm.)

Americans With Disabilities Act

Students with disabilities needing academic accommodation should: (1) register with and provide documentation to the Student Disability Resource Center; and (2) bring a letter to the instructor indicating the need for accommodation and what type. This should be done during the first week of class. This syllabus and other class materials are available in alternative format upon request

Free Tutoring from FSU

On-campus tutoring and writing assistance is available for many courses at Florida State University. For more information, visit the Academic Center for Excellence (ACE) Tutoring Services' comprehensive list of on-campus tutoring options at https://ace.fsu.edu/tutoring or contact tutor@fsu.edu.

CONFIDENTIAL CAMPUS RESOURCES:

Various centers and programs are available to assist students with navigating stressors that might impact academic success. These include the following:

Victim Advocate Program University Center A, Rm. 4100 (850) 644-7161 Available 24/7/365 Office Hours: M-F 8-5 https://dsst.fsu.edu/vap

Counseling and Psychological Services Askew Student Life Center, 2nd floor 942 Learning Way (850) 644-8255 https://counseling.fsu.edu/

Human Physiology PCB 4701 Topics

Transport & Cells Neurons & Synapses Muscle Nervous System Sensory Physiology Endocrinology Blood, Heart, Circulation Respiratory Physiology Gastrointestinal Physiology Renal Physiology

Human Phys Lectures 01 & 02 Cells and Transport across Membranes

Fluid Compartments of the Body Transport across the Plasma Membrane

Diffusion and Osmosis

Carrier Mediated Transport

Membrane Potential

Cell Signaling

Human Phys PCB4701

Transport Fox Chapter 6 pt 1

© T. Houpt, Ph.D.

Compartments of the Body

The body can be divided up into conceptual "compartments" : extracellular vs. intracellular compartments interstitial fluid vs. blood plasma

Compartments are separated by physical barriers (e.g. linings of blood vessels, lining of lungs, lining of GI tract, extracellular matrix)

Circulatory system transports O₂ and water-soluble chemicals between compartments (e.g. from lungs to tissues, or from gut to tissues)

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

"Compartments" of the Body

67% of body water

33% of body water

ctun

"Compartments" of the Body

ctur

"Compartments" of the Body

Cells of Tissue or Organ

what prevents movement of chemicals? how do chemicals move from in/out of cells?

glyco- associated with glucose and/or polysaccharides glycoproteins have polysaccharide side chains

Fox Figure 6.1

Plasma Membrane of cells

selectively permeable phospholipid bilayer

Barrier to large, polar molecules, e.g. proteins, nucleic acids

Permeable to many smaller molecules

Mechanisms of Transport across membrane:

Simple Diffusion

lipid-soluble molecules ions through channel proteins osmosis - diffusion of water through aquaporin channels

Carrier-Mediated Transport

facilitated diffusion active transport

 \bigcirc

Non-Carrier Mediated Transport

Simple Diffusion across Membrane (lipids, gases)

Diffusion of ions through ion channel proteins

Osmosis: diffusion of water through aquaporin channels across membrane

Note: because diffusion moves molecules down a concentration gradient, no extra energy is required to transport these molecule.

Diffusion

Solution = solvent (water) and solute (dissolved molecules)

Due to random movement (thermal energy), solute molecules will show **net** movement from region of high concentration to region of low concentration; solute **moves down concentration gradient**.

Rate of Diffusion:

- increases with temperature
- increases with concentration gradient
- · increases with surface area of membrane
- decreases with distance

Diffusion is only efficient at 100 μm or less, so all tissues of body within 100 μm of blood capillary.

if the solute molecules can penetrate the membrane

then diffusion can occur across the membrane, e.g.

- lipids
- small gas molecules (O₂, CO₂)
- ions through protein channels in the membrane.

Diffusion
$$Flux = -D \frac{d\Phi}{dx}$$

D (diffusion coefficient) is proportional to the squared velocity of the diffusing particles, which depends on the temperature, viscosity of the fluid and the size of the particles according to the Stokes-Einstein relation.

 Φ = concentration of the solute, so $d\Phi/dx$ is the concentration gradient.

Fox Figure 6.3

• Rate of Diffusion increases with surface area of membrane that solute is diffusing across

Diffusion can occur across a semipermeable membrane *if the solute molecules can penetrate the membrane*

Nonpolar molecules (e.g. lipids, steroids) can diffuse through phospholipid bilayer

Small gas molecules (O_2 , CO_2) can diffuse across cell membrane:

O₂ from outside to inside cell; CO₂ from inside to outside of cell

lons can move down concentration gradient through protein channels in the membrane (if the channels are open).

Fox Figure 6.6

cells cannot pump H20 directly!

Diffusion of water across a semipermeable membrane, e.g. through **aquaporin channels** in plasma membrane.

Water moves from low solute concentration solution to high solute concentration solution (i.e. water diffuses from high water concentration to low water concentration)

Water will diffuse by osmosis across the membrane until solute concentration is the same on both sides of the membrane (or until physical pressure stops the flow)

Osmotic Pressure is how strongly a concentrated solution pulls water by osmosis across the membrane.

Pure Water: osmotic pressure = 0 Equal osmotic concentration on each side: **isotonic** less concentrated solution: lower osmotic pressure = **hypotonic** More concentrated solution: higher osmotic pressure = **hypertonic**

Osmo- to push. iso- same, hypo- under/less than, hyper- above/more than, -tonic pressure

Diffusion of **water** across a semipermeable membrane from **less** concentrated solution to **more** concentrated solution

0

Membrane permeable to small H₂0 molecules, but not large solute molecules

Fox Figure 6.7

Osmosis will cause semipermeable membrane sac to expand as water moves from less concentrated to more concentrated solution

Osmosis in a U-Tube

http://www.youtube.com/watch?v=GbudKs-49jo

Sucrose solution (2 M)

water (O M) Higher concentration solution exerts greater osmotic pressure (draws in more water, faster)

Fox Figure 6.9a

After cell swells to maximum possible size, can measure **osmotic pressure** exterted by movement of water into the cell: higher concentration exerts a greater drawing power on water

Osmolarity vs Molarity

Osmotic concentration of a solution is determined by number of **particles**, not concentration of compound.

NaCl in solution dissociates into 2 particles (Na & Cl), so 1 M NaCl solution has **2x** the osmotic concentration as 1 M glucose.

Osmotic concentration is measured in **Osmolarity (Osm)**. *(number of particles in moles / liter solution)*

Osmosis is diffusion of water from: **Iow** Osmolarity to **high** osmolarity.

Remember: Particles Suck!

Osmolarity vs Molarity

```
Molarity (m):
```

```
number of <u>compound molecules</u> per liter of solution
```

```
1 M glucose = 1 mole (6 x 10^{23}) glucose molecules / liter
```

```
1 M NaCl = 1 mole (6 x 10<sup>23</sup>) NaCl molecules / liter
```

Osmolarity (Osm):

```
number of solute particles per liter
```

```
1 M glucose = 1 mole glucose / liter = 1 osmole /liter = 1 Osm
```

```
1 M NaCl = 1 mole Na & 1 mole Cl / liter = 2 osmoles /liter = 2 Osm
```

```
1 M glucose, 1 M fructose = 1 mole fructose & 1 mole glucose / liter
```

= 2 osmoles/liter = 2 Osm

Figure 6.11

Isotonic: no osmosis

 \bigcirc

Homeostasis: Osmotic Regulation

Body tries to maintain constant osmotic concentration of 0.3 Osm for both intracellular and extracellular fluids

(solute molecules may be different in different compartments, but osmotic concentration, the number of particles/liter, is kept constant)

intracellular potassium [K] & anions = 0.3 Osm

extracellular sodium [Na] & anions = 0.3 Osm

homeo- the body

stasis- to keep constant

 \Box

Concentration of Blood Plasma

lon	Concentration $(1 \text{ mM} = 0.001 \text{ M})$
Na +	150 mM
K+	5 mM
Ca++	5 mM
CI -	105 mM
HC0 ₃ -	25 mM
Proteins (-)	35 mM

Osmolarity of blood = ~ 0.3 Osm

Body tries to maintain this osmotic concentration of blood.

if [NaCI] is too high, then animal will try to dilute blood with water.

Isotonic Saline

- 0.15 M NaCl
- = 0.9% NaCl
- = Physiological saline
- = Concentration of NaCl in mammalian blood

Animals tries to maintain this concentration of NaCl.

if [NaCI] is too high, then animal will try to dilute blood with water.

Also important, because water is toxic to tissues!

 \bigcirc

Elevated [NaCl] in blood above 0.15 M causes drinking in pigs

Osmolarity of Intravenous Fluids

IV fluids must be same osmotic concentration as blood; pure water is toxic to tissues!

Isotonic Saline

0.9% NaCl

- = 0.9 g NaCl / 100 ml H₂0
- = 0.15 M NaCl
- = 0.15 M Na+ & 0.15 M CI-
- = 0.3 M particles
- = 0.3 Osmoles
- = 0.3 Osm

5% Dextrose

5% glucose

- = 5 g glucose / 100 ml H₂0
- = 0.3 M glucose
- = 0.3 M particles
- = 0.3 Osmoles
- = 0.3 Osm

Water moves across membrane from *less* concentrated to *more* concentrated solutions

Water moves across membrane from *less* concentrated to *more* concentrated solutions

Water moves across membrane from *less* concentrated to *more* concentrated solutions

Water moves across membrane from *less* concentrated to *more* concentrated solutions

H₂0 moves into cell, causing cell to swell and burst (lyse)

Blood diluted with:

H20

0.15M NaCl

example ^{13g}

Blood + Water

No intact cells to scatter light, but hemoglobin in the water still looks pink.

Blood + Saline

Intact red blood cells scatter light, so looks milky red

H20

0.15M NaCl

Osmolarity vs Molarity

Osmotic concentration of a solution is determined by number of **particles**, not concentration of compound.

NaCl in solution dissociates into 2 particles (Na & Cl), so 1 M NaCl solution has **2x** the osmotic concentration as 1 M glucose.

Osmotic concentration is measured in **Osmolarity (Osm)**. *(number of particles in moles / liter water)*

Osmosis is diffusion of water from: **Iow** Osmolarity to **high** Osmolarity.

Remember: Particles Suck!

Non-Carrier Mediated Transport

Simple Diffusion across Membrane (lipids, gases)

Diffusion of ions through **ion channel proteins**

Osmosis: diffusion of water through aquaporin channels across membrane

Note: because diffusion moves molecules down a concentration gradient, no extra energy is required to transport these molecule.

Carrier-Mediated Transport

Mediated by carrier proteins that span the plasma membrane.

Properties of Carrier Mediated Transport

1. **specificity** for a specific molecule

2. limited number of transporters can be **saturated**, with a max transport rate (**Tm**)

3. Closely related molecules can **compete** for transporters on the cell surface *(different cell types express different transporters)*

Facilitated Diffusion

Transported molecule is moved down its concentration gradient. Does not require extra energy from the cell (uses potential energy of concentration gradient).

Primary Active Transport

Membrane carrier protein is an **ATPase** that breaks down ATP to release energy. Energy is used to transport molecule **against** its concentration gradient (up the gradient, requires energy).

Coupled Active Transport

Cell uses energy to establish steep concentration gradient for molecule 1. Co-transporter allows molecule 1 to move **down** concentration gradient. Couples energy of first molecule to co-transport molecule 2 **up** its gradient.

С

Carrier Mediated Transport

Mediated by **carrier proteins** that span the plasma membrane.

Multiple types of transporters on every cell, depending on cell type.

0)

Fox Figure 6.2
Properties of Carrier Mediated Transport

Non-saturable transport = simple diffusion

1. Each type of carrier protein has **specificity** for a specific molecule: e.g. glucose transporters transport glucose, but not fructose.

2. Because there is a limited number of carrier proteins on the cell surface, carrier transport can be **saturated**, with a maximum rate of transport (**Tm**) at high concentrations of the transported molecules.

3. Closely related molecules can **compete** for the carrier proteins on the cell surface

(different cell types express different transporters)

(molecules X and Y compete for same transporter, so less X transported if Y is also present)

Properties of Carrier Mediated Transport

Non-saturable transport = simple diffusion Molecule Transport maximum X Saturation (T_m) Rate of transport of X

1. Each type of carrier protein has **specificity** for a specific molecule: e.g. glucose transporters transport glucose, but not fructose.

2. Because there is a limited number of carrier proteins on the cell surface, carrier transport can be **saturated**, with a maximum rate of transport (**Tm**) at high concentrations of the transported molecules.

3. Closely related molecules can **compete** for the carrier proteins on the cell surface

(different cell types express different transporters)

Concentration of X

Properties of Carrier Mediated Transport

1. Each type of carrier protein has **specificity** for a specific molecule: e.g. glucose transporters transport glucose, but not fructose.

2. Because there is a limited number of carrier proteins on the cell surface, carrier transport can be saturated, with a maximum rate of transport (Tm) at high concentrations of the transported molecules.

3. Closely related molecules can compete for the carrier proteins on the cell surface

(different cell types express different transporters)

(molecules X and Y compete for same transporter, so less X transported if Y is also present)

Facilitated Diffusion

Transported molecule is moved down its concentration gradient.

Does not require extra energy from the cell (uses potential energy of concentration gradient).

Facilitated Diffusion

Because facilitated diffusion requires using a limited number of transporters, transport can be **regulated** by increasing or decreasing the number of transporters.

Example: the hormone insulin causes a drop in blood glucose by increasing GLUTs on the surface of muscle, liver, and fat cells; causing these cells to take up more glucose.

Example: the hormone insulin causes a drop in blood glucose by increasing GLUTs on the surface of muscle, liver, and fat cells; causing these cells to take up more glucose.

extracellular glucose concentration

Glucose transport is still saturated (because a finite number of trasporters), but with more transporters insulin-stimulated tissue can take up more glucose.

Primary Active Transport

Membrane carrier protein is an **ATPase** that breaks down ATP to release energy.

Energy is used to transport molecule **against** its concentration gradient (up the gradient, requires energy).

Ca²⁺ ATPase Pump: Hydrolysis of ATP and release of ADP causes conformational change in transporter, releasing Ca²⁺ outside the cell.

Primary Active Transport

Most cells maintain a steep Na+ and K+ gradient across their membranes.

Plasma membrane

Fox Figure 6.19

Secondary Active Transport (Coupled Transport)

Cell uses energy to establish steep concentration gradient for molecule 1. e.g. use NA+/K+ ATPase pump to set high Na+ outside of cell

Co-transporter allows molecule 1 to move **down** concentration gradient.

Couples energy of first molecule to co-transport molecule 2 **up** its gradient. *e.g. concentrate glucose inside cell*

Fox Figure 6.20

 Cotransport or symport: both molecules move in same direction (e.g. Na⁺ & glucose move into cell.)
Countertransport or antiport: molecules move in opposite directions (e.g. one moves into cell, other moves out of cell.)

Secondary Active Transport (Coupled Transport)

Cell uses energy to establish steep concentration gradient for molecule 1. e.g. use NA+/K+ ATPase pump to set high Na+ outside of cell

Co-transporter allows molecule 1 to move **down** concentration gradient.

Couples energy of first molecule to co-transport molecule 2 **up** its gradient. *e.g. concentrate glucose inside cell*

Fox Figure 6.20

 Cotransport or symport: both molecules move in same direction (e.g. Na⁺ & glucose move into cell.)
Countertransport or antiport: molecules move in opposite directions (e.g. one moves into cell, other moves out of cell.)

Putting mechanisms together:

Cholera : disease of membrane transport

CFTR = cystic fibrosis chloride transporter

Bulk Transport

Summary of Transport

Non-Carrier Mediated Transport

1. Simple Diffusion across Membrane (lipids, gases)

2. Diffusion of ions through ion channel proteins

3. Osmosis: diffusion of water through aquaporin channels across membrane

Note: because diffusion moves molecules down a concentration gradient, no extra energy is required to transport these molecules.

Carrier Protein Mediated Transport

1. Facilitated Diffusion: Transported molecule carried by transporter moves down its concentration gradient.

2. Primary Active Transport: Membrane carrier protein transports molecule against its concentration gradient

3. **Coupled Active Transport**: Couples energy of first molecule moving down concentration gradient to co-transport molecule 2 up its concentration gradient.

Note: Specific, saturable, competition. **Active Transport** requires energy, using up ATP directly (primary) or indirectly (coupled) to transport against a concentration gradient.

Bulk Transport

1. Endocytosis

2. Exocytosis

Note: Vesicles with phospholipid bilayers fuse with plasma membrane, or pinch off of plasma membrane, to move contents of vesicle in or out of the cell.