Vert Phys PCB3743

Blood Pressure Fox Chapter 14 part 2

© T. Houpt, Ph.D.

1

Cardiac Output and Blood Pressure

How to Measure Blood Pressure Contribution of vascular resistance to blood pressure

Cardiovascular Response to Exercise

Changes in Blood Flow Increase Cardiac Output to maintain BP, increase heart rate, increase stroke volume

Control of Blood Volume and Pressure

Baroreceptors Osmoreceptors Endocrine Responses: ADH, Angiotensin II, ANP

2

Cardiac Output and Blood Pressure

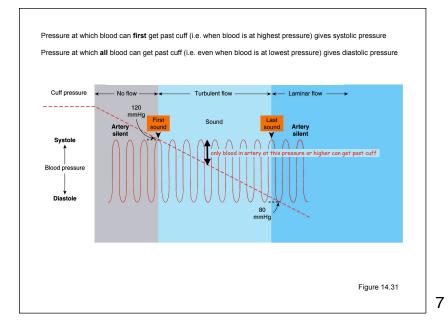
Blood flow = ΔP / resistance cardiac output = MAP / TPR MAP = mean arterial pressure; TPR = total peripheral resistance.

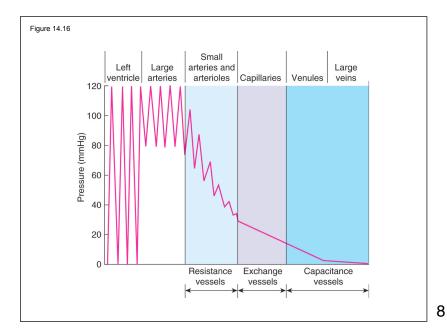
Changes in cardiovascular function must be caused by changes in these 3 variables.

Note the similarity to electrical current equation: I = V / R

Arterial Blood Pressure is measured with a pressure cuff and **sphygmomanometer**. 1st Korotkoff sound occurs at systolic pressure, 2nd sound at diasystolic pressure.

Blood pressure is highest in aorta and large arteries; drops off in smaller arteries and capillaries because of increased resistance to blood flow. (high on one side of resistance, low on the other side)

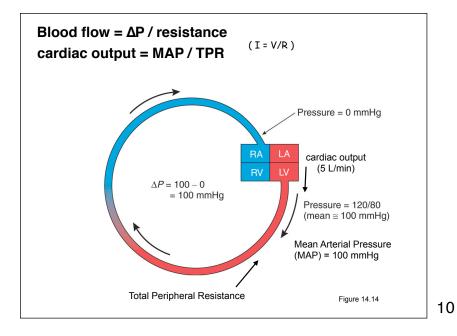

© Ruth Jenkinson/MIDIRS/Science Photo/Photo Researchers

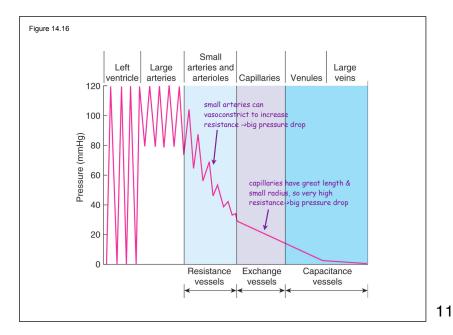

5

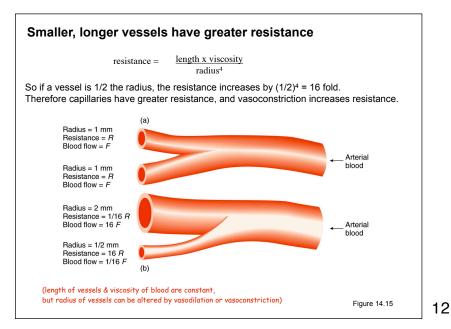
Pressure at which blood can first get past cuff (i.e. when blood is at highest pressure) gives systolic pressure Pressure at which all blood can get past cuff (i.e. even when blood is at lowest pressure) gives diastolic pressure gives diastolic press

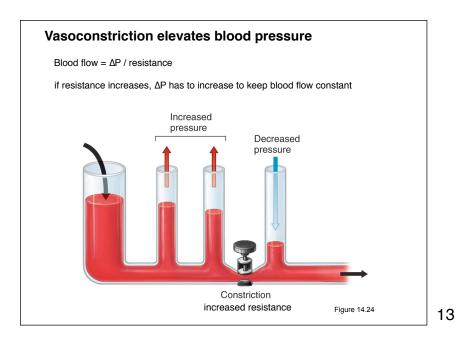
Blood pressure = 120/80

Figure 14.30

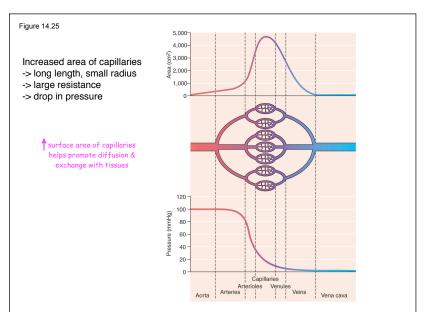


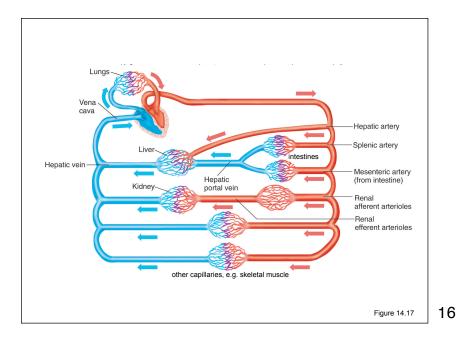


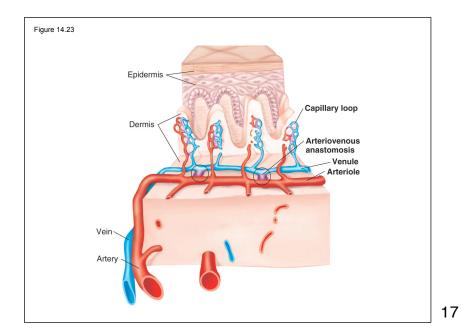

Resistance of Blood Vessels resistance = (length of vessel) x (viscosity of blood) / (radius of vessel) Smaller, longer vessels have greater resistance. Smaller, longer vessels have greater resistance. Wider vessels have lower resistance. Vasoconstriction: Regulation of radius of blood vessels occurs in small arteries & arterioles. Vasoconstriction will decrease radius, raising resistance. Vasodilation will increase radius, lowering resistance. Capillaries Capillaries have very high surface area & very small radius, thus have high resistance.


Capillaries have very high surface area & very small radius, thus have high resistance. Blood pressures drops precipitously across capillary beds.


Blood flow to different capillary beds in different organs is regulated by vasoconstriction/ dilation of arterioles. Blood is **shunted** through **arteriovenous anastomoses** (short circuit from artery to veins, bypassing capillaries).







Cardiovascular Responses to Exercise:

Problem:

Need to increase delivery of oxygen, glucose to skeletal muscle during exercise.

Solution:

- Increase cardiac output so more oxygen can be delivered
 re-route blood to target heart & skeletal muscle

Implementation:

- decrease blood flow to some organs by vasoconstriction
- increase blood flow to heart & skeletal muscle by vasodilation
- increase cardiac output by increasing heart rate & stroke volume

Regulatory Mechanisms:

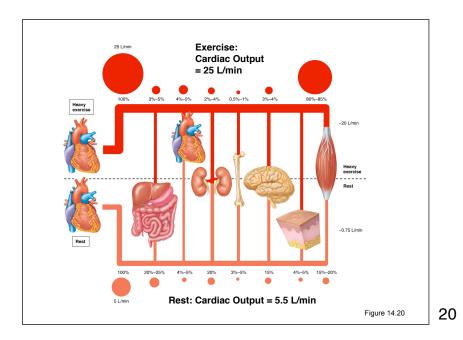
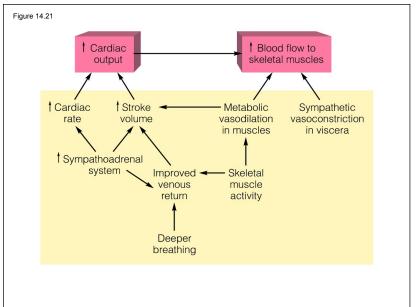
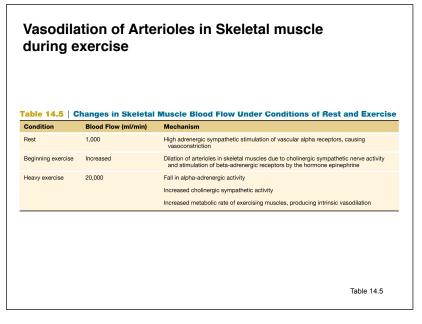
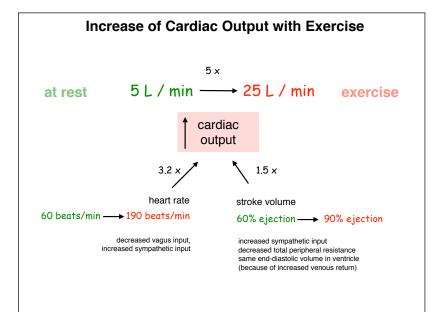

- Decreased parasympathetic, increased sympathetic outflow -> heart, arterioles
- Epinephrine release from adrenal medulla -> heart, arterioles
- Metabolites released from muscle -> vasodilation (intrinsic factors).
- Increased breathing, muscle movements -> increased venous return.

Table	14 3


Table 14.3 ECardiac Output	stimated Distribut	tion of the
Organs	Blood Flow	
	Milliliters	Percent

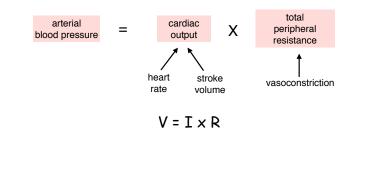
	Milliliters per Minute	Percent Total
Gastrointestinal tract and liver	1,400	24
Kidneys	1,100	19
Brain	750	13
Heart	250	4
Skeletal muscles	1,200	21
Skin	500	9
Other organs	600	10
Total organs	5,800	100

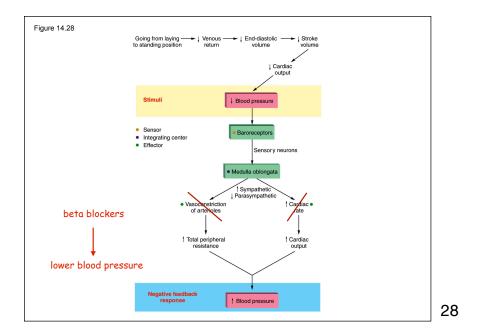

What is cardiac output (ml/min) through lungs at rest?

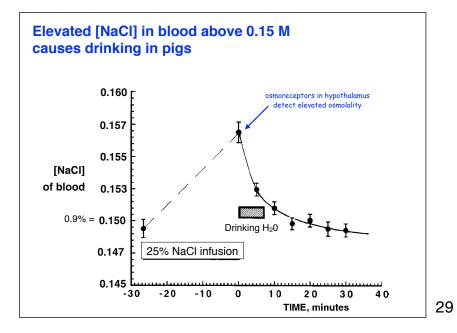


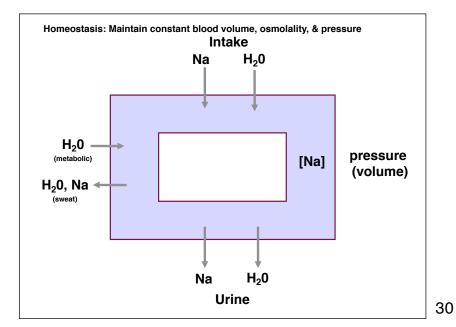
Organs	Blood F		
	At Rest	Exercising	
Gastrointestinal tract and liver	1,400	750	constriction
Kidneys	1,100	500	constriction
Brain	750	750	
Heart	250	1000	dilation
Skeletal muscles	1,200	21,250	dilation
Skin	500	0	constriction
Other organs	600	750	
Total organs	5,800	25,000	
Cardiac Output	: 5.8 L/min	25 L/min	
		↑ vasodile	ance ation at muscles

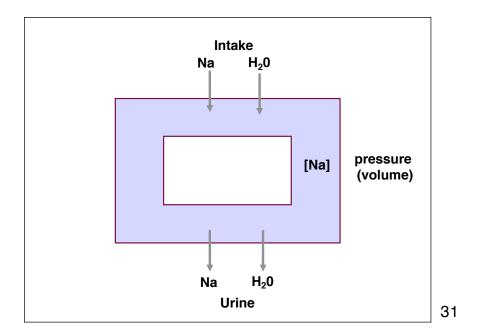
Variable	Change	Mechanisms
Cardiac output	Increased	Increased cardiac rate and stroke volume
Cardiac rate	Increased	Increased sympathetic nerve activity; decreased activity of the vagus nerve
Stroke volume	Increased	Increased myocardial contractility due to stimulation by sympathoadrenal system; decreased total peripheral resistance
Total peripheral resistance	Decreased	Vasodilation of arterioles in skeletal muscles (and in skin when thermoregulatory adjustments are needed)
Arterial blood pressure	Increased	Increased systolic and pulse pressure due primarily to increased cardiac output; diastoli pressure rises less due to decreased total peripheral resistance
End-diastolic volume	Unchanged	Decreased filling time at high cardiac rates is compensated for by increased venous pressure, increased activity of the skeletal muscle pump, and decreased intrathoracic pressure ading the venous return
Blood flow to heart and muscles	Increased	Increased muscle metabolism produces intrinsic vasodilation; aided by increased cardia output and increased vascular resistance in visceral organs
Blood flow to visceral organs	Decreased	Vasoconstriction in digestive tract, liver, and kidneys due to sympathetic nerve stimulation
Blood flow to skin	Increased	Metabolic heat produced by exercising muscles produces reflex (involving hypothalamus that reduces sympathetic constriction of arteriovenous shunts and arterioles
Blood flow to brain	Unchanged	Autoregulation of cerebral vessels, which maintains constant cerebral blood flow despite increased arterial blood pressure

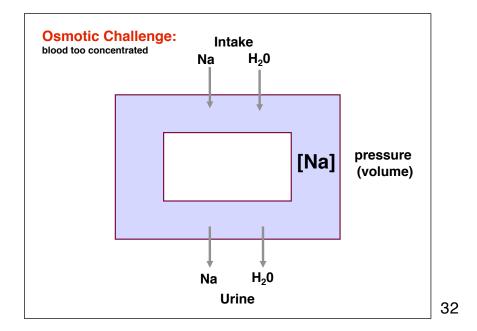

Control of Blood Pressure & Blood Volume
Rapid neural responses: 1. Baroreflex change in baroreceptor sensory afferent fibers causes change in autonomic nerve activity e.g. decreased vagus activity, increase sympathetic -> increased cardiac output & vasocontriction -> increase blood pressure
 Osmoreceptors Hypothalamic neurons respond to increase in osmolality of blood to induce thirst & drinking -> dilute blood back to 300 mOsm.
Endocrine Responses: 1. Antidiuretic hormone (ADH) Increased osmolality causes release of antidiuretic hormone (ADH) from hypothalamic axons in the posterior pituitary which causes kidney to retain more water
2.Renin-Angiotensin II-Aldosterone Decreased blood flow & pressure in kidneys -> release of renin, which cleaves angiotensinogen to angiotensin I -> converted to angiotensin II by angiotensin converting enzyme (ACE) in lungs. Ang II causes vasoconstriction-> increased blood pressure. (Ang II also stimulates adosterone synthesis in advenal cortex leading to Na retention by kidneys)
3. Atrial Natriuretic Peptide (ANP) Increased blood volume -> stretch of left atrium -> release of ANP -> increased NaCl and H20 excretion by kidney in urine -> decreased blood volume
diurectic - increases urine production (uresis = urine) angio-little vessel, i.e. related to blood vessels natriuretic - to increase salt (natrium) in the urine.

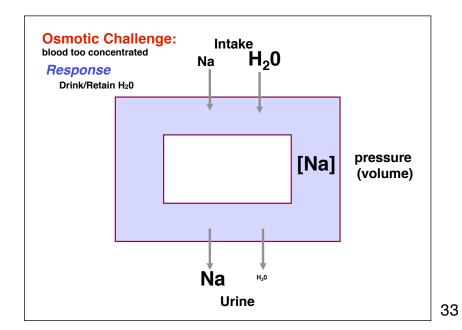

26

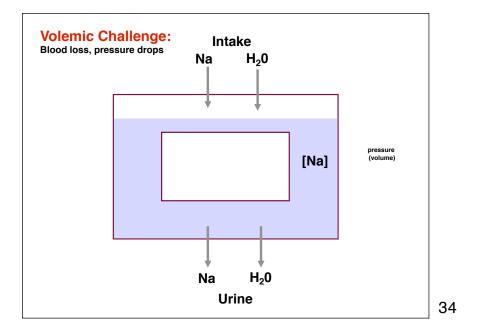

Normal:

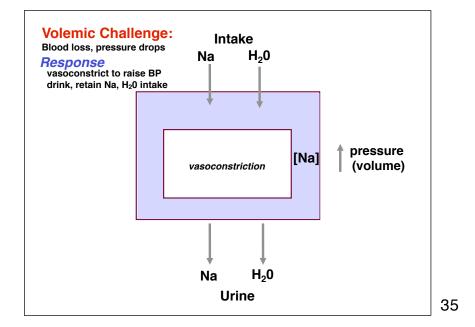

adjust cardiac output & TPR & blood volume to maintain 120/80 mmHg

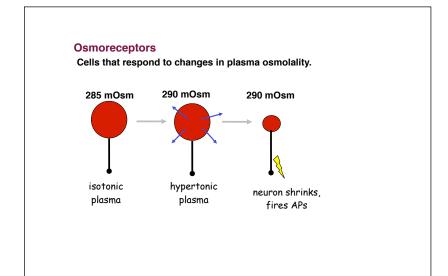

Essential Hypertension: increase in cardiac output or TPR or both leads to high blood pressure of 140/90 mmHg -> increased risk of heart disease, stroke, kidney failure.

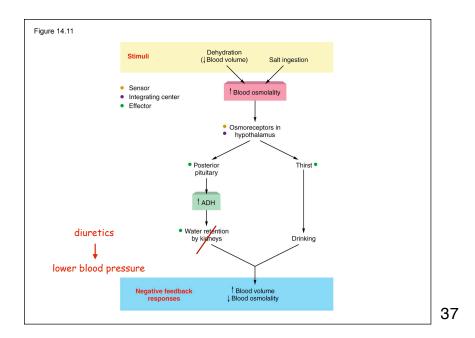


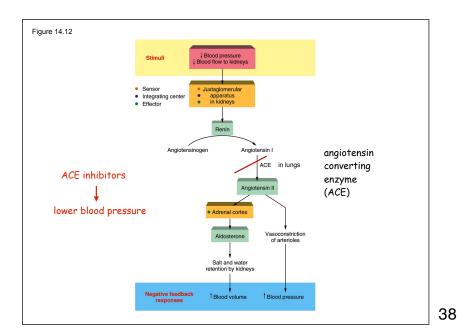


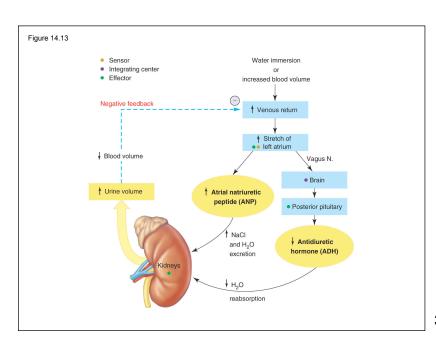


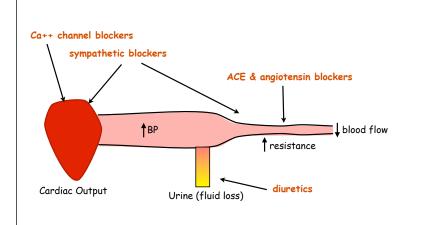












Extrinsic Agent		Effect	Comments
Sympathetic nerves			
Alpha-adrenergic	_	Vasoconstriction	Vasoconstriction is the dominant effect of sympathetic nerve stimulation on the vascular system, and it occurs throughout the body.
Beta-adrenergic	neural	Vasodilation	There is some activity in arterioles in skeletal muscles and in coronary vessels, but effects are masked by dominant alpha-receptor-mediated constriction.
Cholinergic	2	Vasodilation	Effects are localized to arterioles in skeletal muscles and are produced only during defense (fight-or-flight) reactions.
Parasympathetic ne	erves	Vasodilation	Effects are restricted primarily to the gastrointestinal tract, external genitalia, and salivary glands and have little effect on total peripheral resistance.
Angiotensin II	endocrine	Vasoconstriction	A powerful vasoconstrictor produced as a result of secretion of renin from the kidn it may function to help maintain adequate filtration pressure in the kidneys when systemic blood flow and pressure are reduced.
ADH (vasopressin)	endo	Vasoconstriction	Although the effects of this hormone on vascular resistance and blood pressure in anesthetized animals are well documented, the importance of these effects in conscious humans is controversial.
Histamine	<u>و</u>	Vasodilation	Histamine promotes localized vasodilation during inflammation and allergic reaction
Bradykinins	paracrine	Vasodilation	Bradykinins are polypeptides secreted by sweat glands and by the endothelium of blood vessels; they promote local vasodilation.
Prostaglandins	pare	Vasodilation or vasoconstriction	Prostaglandins are cyclic fatty acids that can be produced by most tissues, includ blood vessel walls. Prostaglandin I, is a vasodilator, whereas thromboxane A, is a vasoconstrictor. The physiological significance of these effects is presently controversial.

ble 14.10		
Table 14.10 Mechanism	s of Action of Selected	Antihypertensive Drugs
Category of Drugs	Examples	Mechanisms
Diuretics	Thiazide; furosemide	Increase volume of urine excreted, thus lowering blood volume
Sympathoadrenal system inhibitors	Clonidine; alpha-methyldopa	Act to decrease sympathoadrenal stimulation by bonding to $\alpha_{\rm 2}{}^{\rm a}{\rm adrenergic}$ receptors in the brain
	Guanethidine; reserpine	Deplete norepinephrine from sympathetic nerve endings
	Atenolol	Blocks beta-adrenergic receptors, decreasing cardiac output and/or renin secretion
	Phentolamine	Blocks alpha-adrenergic receptors, decreasing sympathetic vasoconstriction
Direct vasodilators	Hydralazine; minoxidil sodium nitroprusside	Cause vasodilation by acting directly on vascular smooth muscle
Calcium channel blockers	Verapamil; diltiazem	Inhibit diffusion of Ca ²⁺ into vascular smooth muscle cells, causing vasodilation and reduced peripheral resistance
Angiotensin-converting enzyme (ACE) inhibitors	Captopril; enalapril	Inhibit the conversion of angiotensin I into angiotensin II
Angiotensin II-receptor antagonists	Losartan	Blocks the binding of angiotensin II to its receptor

