Constituents of Blood

Nutrients: O2 Glucose amino acids	Waste products: CO2 bilirubin urea	lons: Na+ K+ Cl-	Buffers: HCO3-
cholesterol		Ca++	
vitamins		Mg++	
triglycerides		PO3-	

Red Blood Cells

Immune Cells and Factors	Disease Diagnostics: Liver markers
Hormones & Binding factors	cardiac markers tumor markers
Clotting Factors and Platelets	

Composition of Blood

Red Blood Cells

Biconcave discoids. Contain hemoglobin, which binds O_2 and helps transport CO_2 . Red blood cells not have nuclei, so no DNA! (also no mitochondria)

White Blood Cells

Immune system cells. Source of DNA for PCR fingerprinting studies using blood.

Platelets

Very small fragments of cells which help in blood clotting.

All derived from bone marrow stem cells.

Table 13.2 Formed Elements of the Blood

Component	Description	Number Present	Function
Erythrocyte (red blood cell)	Biconcave disc without nucleus; contains hemoglobin; survives 100 to 120 days	4,000,000 to 6,000,000 / mm ³	Transports oxygen and carbon dioxide
Leukocytes (white blood cells)		5,000 to 10,000 / mm ³	Aid in defense against infections by microorganisms
Granulocytes	About twice the size of red blood cells; cytoplasmic granules present; survive 12 hours to 3 days		
1. Neutrophil	Nucleus with 2 to 5 lobes; cytoplasmic granules stain slightly pink	54% to 62% of white cells present	Phagocytic
2. Eosinophil	Nucleus bilobed; cytoplasmic granules stain red in eosin stain	1% to 3% of white cells present	Helps to detoxify foreign substances; secretes enzymes that dissolve clots; fights parasitic infections
3. Basophil	Nucleus lobed; cytoplasmic granules stain blue in hematoxylin stain	Less than 1% of white cells present	Releases anticoagulant heparin
Agranulocytes	Cytoplasmic granules not visible; survive 100 to 300 days (some much longer)		
1. Monocyte	2 to 3 times larger than red blood cell; nuclear shape varies from round to lobed	3% to 9% of white cells present	Phagocytic
2. Lymphocyte	Only slightly larger than red blood cell; nucleus nearly fits cell	25% to 33% of white cells present	Provides specific immune response (including antibodies)
Platelet (thrombocyte)	Cytoplasmic fragment; survives 5 to 9 days	130,000 to 400,000 / mm ³	Enables clotting; releases serotonin, which causes vasoconstriction

Figure 13.1

Table 13.1Representative NormalPlasma Values

Measurement	Normal Range
Blood volume	80–85 ml/kg body weight
Blood osmolality	285–295 mOsm
Blood pH	7.38–7.44
Enzymes	
Creatine phosphokinase (CPK)	Female: 10-79 U/L
	Male: 17-148 U/L
Lactic dehydrogenase (LDH)	45–90 U/L
Phosphatase (acid)	Female: 0.01–0.56 Sigma U/ml
	Male: 0.13–0.63 Sigma U/ml
Hematology Values	
Hematocrit	Female: 36%-46%
	Male: 41%-53%
Hemoglobin	Female: 12–16 g/100 ml
	Male: 13.5–17.5 g/100 ml
Red blood cell count	4.50–5.90 million/mm ³
White blood cell count	4,500–11,000/mm ³
Hormones	
Testosterone	Male: 270–1,070 ng/100 ml
	Female: 6-86 ng/100 ml
Adrenocorticotrophic hormone (ACTH)	6–76 pg/ml
Growth hormone	Children: over 10 ng/ml
	Adult male: below 5 ng/ml
Insulin	2–20 µU/ml (fasting)

http://en.wikipedia.org/wiki/ Reference_ranges_for_blood_tests

Table 13.1

Blood Clotting (hemostasis)

Vasoconstriction, formation of platelet plug, fibrin web.

Intact blood vessel: Endothelial cells inhibit platelet aggregation by

1) physically separating platelets from collagen

2) secreting prostacyclin & nitric oxide (NO), & cause vasodilation

3) expressing CD39 enzyme which breaks down ADP in the blood

Damaged blood vessel:

1) Platelets bind to collagen and **von Willbrand's factor** (protein produced by endothelial cells that binds platelets and collagen together)

2) Platelets release secretory granules (platelet release reaction):
 ADP & thromboxane A -> recruit more platelets to plug
 serotonin causes vasoconstriction (aspirin inhibits prostaglandin production)

3) Platelets activate **plasma clotting factors**, converting soluble **fibrinogen** -> insoluble **fibrin** -> platelet plug.

hemo- related to blood *hemostasis-* preventing blood loss (i.e. stop bleeding) *hemorrhage-* bleeding

vasodilation- opening blood vessels wider *vasoconstriction* - making blood vessels narrower

(a)

(b)

Figure 13.7

Intact Blood Vessel:

Prostaglandin & NO keep vessel dilated; ADP levels low, so platelets inactive

Damaged Blood Vessel:

Prostaglandin TxA2, high levels of ADP activate platelets. Activated platelets bind to collagen and von Willebrand's factor

Clot Formation:

Platelet plug forms; activated plasma clotting factors causes fibrin formation to reinforce platelet plug

From Nature Volume 413, Issue 6855, 4 October 2001, cover. Photo by Dr. John W. Weisel, University of Pennsylvania

Clotting Factors & Fibrin Formation

Intrinsic Pathway: Blood will clot on its own, e.g. in a test tube

Extrinsic Pathway: Damaged tissue releases tissue factor that accelerates clotting

Key events of clotting:

Prothrombin converted into thrombin, an active enzyme (thrombosis = clotting)

Thrombin converts fibrinogen to fibrin, an insoluble fibrous molecule.

Vitamin K (*Koagulationsvitamin*) converts glutamate residues of clotting factors into gammacarboxyglutamate, which increases binding of Ca++ to clotting factors. Provided by gut bacteria. Vitamin K deficiency or blockade by drugs leads to decreased clotting ability.

Clot Dissolution:

Factor XII activates Kallikrein (enzyme).

Kallikrein converts plasminogen into plasmin (enzyme).

Plasmin digests fibrin to dissolve clot.

Tissue plasminogen activator (TPA) & streptokinase are synthetic enzymes administered after stroke or cardiac **thrombosis** (vessel blocked by blood clot)

Table 13.4 The Plasma Clotting Factors

Factor	Name	Function	Pathway
T	Fibrinogen	Converted to fibrin	Common
Ш	Prothrombin	Converted to thrombin (enzyme)	Common
III	Tissue thromboplastin	Cofactor	Extrinsic
IV	Calcium ions (Ca ²⁺)	Cofactor	all
V	Proaccelerin	Cofactor	Common
VII*	Proconvertin	Enzyme	Extrinsic
VIII	Antihemophilic factor	Cofactor	Intrinsic
IX	Plasma thromboplastin component; Christmas factor	Enzyme	Intrinsic
Х	Stuart-Prower factor	Enzyme	Common
XI	Plasma thromboplastin antecedent	Enzyme	Intrinsic
XII	Hageman factor	Enzyme	Intrinsic
XIII	Fibrin stabilizing factor	Enzyme	Common

*Factor VI is no longer referenced; it is now believed to be the same substance as activated factor V.

Most enzymes require Ca++ (factor IV)

active enzyme

QuikClot Combat Gauze® Item #: 200

QuikClot Combat Gauze, with kaolin technology, is the CoTCCC hemostatic dressing of choice for the U.S. Department of Defense (DOD).²⁰

CONTACT A QUIKCLOT MILITARY SPECIALIST

Most enzymes require Ca++ (factor IV)

active enzyme

Table 13.5 Some Acquired and Inherited Clotting Disorders and a Listing of Anticoagulant Drugs

Category	Cause of Disorder	Comments
Acquired clotting disorders	Vitamin K deficiency	Inadequate formation of prothrombin and other clotting factors in the liver
Inherited clotting disorders	Hemophilia A (defective factor $VIII_{AHF}$)	Recessive trait carried on X chromosome; results in delayed formation of fibrin
	Von Willebrand's disease (defective factor $\text{VIII}_{\text{\tiny VWF}}$)	Dominant trait carried on autosomal chromosome; impaired ability of platelets to adhere to collagen in subendothelial connective tissue
	Hemophilia B (defective factor IX); also called Christmas disease	Recessive trait carried on X chromosome; results in delayed formation of fibrin
Anticoagulants		
Aspirin	Inhibits prostaglandin production, resulting in a defective platelet release reaction	
Coumarin	Inhibits activation of vitamin K	
Heparin	Inhibits activity of thrombin	
Citrate	Combines with Ca ²⁺ , and thus inhibits the activity of many clotting factors	

hemophilia - "love to bleed"

Hemophilia A & B are X-linked recessive disease

Figure 1. Queen Victoria's family tree.

Top Hat

Most enzymes require Ca++ (factor IV)

The main treatment for hemophilia is called replacement therapy. Concentrates of clotting factor VIII (for hemophilia A) or clotting factor IX (for hemophilia B) are slowly dripped or injected into a vein. These infusions help replace the clotting factor that's missing or low.

