Resting Distribution of lons in Mammalian Neurons					
	Outside	Inside (mM)	E ion	Permab.	
K+	5	100	-81	1.0	
Na+	150	15	+62	0.04	
CI	100	10	-62	0.045	
V _m = -60 mV					
V _m approaches the Equilibrium Potential of					
the most permeable ion, which at rest is K ⁺					

_		

Change of Ion Concentration leads to change of \boldsymbol{V}_{m}				
	Outside	Inside (mM)	E ion	Permab.
K+	150	100	+11	1.0
Na+	150	15	+62	0.04
CI-	100	10	-62	0.045

V_m= +11 mV

Change of Permeability leads to change of ${\rm V}_{\rm m}$				
	Outside	Inside (mM)	E ion	Permab.
K+	5	100	-81	1.0
Na+	150	15	+62	20
CI-	100	10	-62	0.045
V _m = +54 mV				

Neurotransmitters cause Na⁺ channels to open and let Na⁺ into the neuron.

(could also be artificial injection of positive current -- anything that raises Vm from -70 mV -> -30mV)

dendrites

Summary of Action Potential (AP)

- 0. At rest, resting K+ channels open, so Vm is close to E_{K}
- 1. Depolarization by electrical stimulation or neurotransmitter
- 2. V_m rises above AP threshold (depolarization)
- 3. Voltage-gated Na+ channels open: V_m moves to E_{Na}
- 4. Rising V_m depolarizes neighboring membrane: AP starts moving down axon (speed depends on cable properties)
- 5. Voltage-gated Na+ channels inactivate; Voltage-gated K+ channels open; Vm moves to $E_{\rm K}$
- 6. Voltage-gated K+ channels close
- 7. V_{m} returns to resting potential, only resting K+ channels open

Three Types of Ion Channels play a role in Action Potential: 1.Resting K+ channels: always open, keep resting Vm of neuron close to E_{K+} 2.Voltage-Gated Na+ Channels: when neuron Vm becomes less negative (depolarizes), -65 mV -> -40 mV many Na+ channels open very quickly (< 1 msec)</td> 3.Voltage-Gated K+ Channels: also open when neuron depolarizes, but more slowly (5 msec) than Na+ channels; restore Vm to -65 mV

Voltage-Gated Sodium (Na+) Channel

3 Properties:

- 1.Selective for Na+ ions only
- 2.Opens when Vm rises above -40 mV (depolarizes)
- 3.Shortly after opening, inactivates and channels is blocked

https://www.youtube.com/watch?v=Sa1wM750Rvs

Cable Properties of Axons

1. Insulated myelinated axons have higher capacitance, so current is not dissipated and travels further

With myelin sheath, charge is conducted to the next gap in the insulation; action potential jumps from one node of Ranvier to the next node very quickly = saltatory (jumping) conduction

2. Wider diameter axons have lower resistance, so wave of depolarization spreads faster

Because ions flow more easily to next segment of membrane in wider axons, action potentials move faster down wider axons.

Summary of Action Potential (AP)

- 0. At rest, resting K+ channels open, so Vm is close to E_{K}
- 1. Depolarization by electrical stimulation or neurotransmitter
- 2. V_m rises above AP threshold (depolarization)
- 3. Voltage-gated Na⁺ channels open: V_m moves to E_{Na}
- 4. Rising $V_{\rm m}$ depolarizes neighboring membrane: AP starts moving down axon (speed depends on cable properties)
- 5. Voltage-gated Na+ channels inactivate; Voltage-gated K+ channels open; V_m moves to E_{κ}
- 6. Voltage-gated K+ channels close
- 7. V_{m} returns to resting potential, only resting K+ channels open