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O P I N I O N

The neural mechanisms of gustation: 
a distributed processing code
Sidney A. Simon, Ivan E. de Araujo, Ranier Gutierrez and 
Miguel A. L. Nicolelis

Abstract | Whenever food is placed in the mouth, taste receptors are stimulated. 

Simultaneously, different types of sensory fibre that monitor several food 

attributes such as texture, temperature and odour are activated. Here, we 

evaluate taste and oral somatosensory peripheral transduction mechanisms as 

well as the multi-sensory integrative functions of the central pathways that 

support the complex sensations that we usually associate with gustation. On the 

basis of recent experimental data, we argue that these brain circuits make use of 

distributed ensemble codes that represent the sensory and post-ingestive 

properties of tastants.

The gustatory system enables animals to 
detect and discriminate among foods, to 
select nutritious diets, and to initiate, sustain 
and terminate ingestion for the purpose 
of maintaining energy balance. For most 
mammals, the decision to ingest a particular 
food depends not only on its taste but also 
on its appearance, familiarity, odour, texture, 
temperature and, importantly, its post-
ingestive effects (for example, the ability to 
reduce hunger). For humans, such factors 
also include cultural acceptance as well as 
the social, emotional and cognitive contexts1 
under which a given food is eaten.

Previous reviews on gustatory process-
ing tended to focus on either the molecular 
bases of peripheral transduction events or on 
central taste representations in isolation from 
other modalities2–7. Here, we propose instead 
that the biological functions of gustation 

must be considered in combination with 
several sensory and physiological processes 
that occur simultaneously with taste receptor 
activation. According to this view, gustation 
is a distributed neural process by which 
information conveyed to the brain through 
specialized taste, orosensory and gastrointes-
tinal fibres is integrated, so that the organism 
can engage in appropriate feeding behav-
iours. Such a view emerges from the analysis 
of recent experimental data8–11 showing that 
the neural mechanisms of gustation rely on 
neural ensemble codes supported by popu-
lations of neurons that are capable of encod-
ing the multisensory properties of intra-oral 
stimuli under particular physiological states. 
Revealing the logic of the neural mechanism 
of gustation is currently a major topic in 
neurobiology, given the efforts made so far 
towards the understanding of how 
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categories such as astringent, fatty, tartness, 
water, metallic, starchy, cooling, tingling and 
pungent. As we discuss, the subjective sen-
sations associated with these non-primary 
tastes result from the co-activation of taste 
and specialized somatosensory neurons 
located in the oral cavity. These specialized 
neurons surround taste buds, and include 
different classes of mechano- and chemo-
receptors that transmit information on the 
food’s texture, weight and temperature to 
the brain mainly via the trigeminal system 
(FIG. 1).

complex feeding behaviours can become 
dysfunctional (as in the case of obesity).

We cover three main topics. First, we 
describe the interactions between various 
oral taste and somatosensory receptors 
in the PNS. We then focus on the conver-
gence of gustatory, somatosensory and 
visceral influences at the brainstem level. 
Finally, we describe current data on the 
behaviour of neural populations located in 
the forebrain relating to the multisensory 
and postingestive properties of intra-oral 
stimuli.

The peripheral gustatory system

Although the sense of taste is generally 
associated solely with the activation of taste 
buds, the act of placing food or drinks in 
the mouth automatically elicits responses 
from a different system that monitors the 
temperature and texture of the food. In this 
regard, gustation is inherently multisensory. 
It is generally accepted that there are five 
primary tastes: salt, sweet, bitter, umami (a 
savoury taste) and sour (acidic). However, 
every gourmet worth his/her salt is aware 
that this list should also include perceptual 

Figure 1 | Schematic diagram of a taste bud, taste receptor cell and 
associated neurons. a | Illustration of a taste bud that is embedded in an 

epithelium. The different types of taste receptor cell (TRC) are indicated by 

different colours as they can contain different types of receptor and intra-

cellular modulator. The gustatory neurons with their associated colours that 

match the associated TRCs indicate that they might respond best to those 

stimuli that activate the particular TRCs. These primary gustatory neurons 

project ipsilaterally to the rostral nucleus tractus solitarius (rNTS). The black 

coloured axon that is embedded in the epithelia that surrounds the taste 

bud is likely to be a nociceptor. These neurons project ipsilaterally to the 

spinal nucleus of the trigeminal cranial nerve (SNV) and have collaterals that 

project to the rNTS. b | Diagram of a generic TRC with an associated neuron. 

The apical membrane of this TRC contains receptors for tastants that are 

not necessarily in the same TRC. These receptors include G-protein-coupled 

receptors (GPCRs) for amino acids (T1R1/T1R3), sweet tastants (T1R2/T1R3), 

bitter tastants (T2Rs) and for long chain fatty acids (CD36/FATP). The GPCRs 

and ion channels in the basolateral membrane have been shown to be 

responsive to peptides and hormones, and neurotransmitters, respectively. 

Ion channels that are likely to be involved in salt taste (epithelial sodium 

channels, ENaCs) and acid taste (PKD2L1) are also on the apical membrane. 

The undissociated form of the acid (HA) diffuses into the TRCs, and protons, 

sodium and calcium could permeate through PKD2L1 channels. The baso-

lateral membranes of selected TRCs contain TRPM5 channels. Also shown 

are intracellular pathways that include α-gustducin and PLCβ2, which 

degrades phosphatidylinositol-4,5-bisphosphate (PIP
2
) to produce diacyl-

glycerol (DAG) and inositol-1,4,5-trisphosphate (IP
3
). IP

3
 could then bind to 

and activate IP
3
R3 receptors on the endoplasmic reticulum that release 

calcium. The increase in calcium could activate TRPM5 receptors and cause 

transmitters such as ATP to be released from synaptic vesicles to bind to 

their receptors on primary neurons. In other TRCs, such as those activated 

by NaCl, their depolarization might evoke action potentials through the 

activation of voltage-dependent sodium, potassium and calcium channels. 

Note that all the transduction pathways and receptors are drawn in a single 

model TRC.

P E R S P E C T I V E S

NATURE REVIEWS | NEUROSCIENCE  VOLUME 7 | NOVEMBER 2006 | 891

© 2006 Nature Publishing Group 

 



The taste bud and associated neural affer-
ents. In the oral chemosensory epithelia, 
onion-shaped structures known as taste 
buds contain 50–100 taste receptor cells 
(TRCs) of various types12. These TRCs are 
embedded in stratified epithelia and are 
distributed throughout the tongue, palate, 
epiglottis and oesophagus12–14. On their 
apical end, taste cells make contact with the 
oral cavity through a small opening in the 
epithelium called the taste pore, which is 
filled with microvilli. The plasma mem-
branes of these microvilli contain many of 
the receptors responsible for detecting the 
presence of various tastants (FIG. 1). Tight 
junctions, located just below the microvilli, 
protect the basolateral side of the TRCs from 
potentially cell-damaging compounds that 
are placed in the mouth15. Small clusters of 
TRCs are electrically and chemically coupled 
by gap junctions16,17. As TRCs have resistances 
in the giga-ohm range, it has been suggested 
that the activation of any TRC in a cluster 
will affect the responses of others via gap 
junctions17–19.

On the palate and the anterior tongue, 
TRCs are innervated by the chorda tympani 
and greater superior petrosal branches of 
the facial nerve, respectively. These nerves 
transmit information about the identity 
and quantity of the chemical nature of the 
tastants. On the epiglottis, oesophagus and 
posterior tongue, TRCs are innervated by 
the lingual branch of the glossopharyngeal 

nerve and the superior laryngeal branch of the 
vagus nerve. These nerves are responsive to 
tastants20,21 and participate primarily in the 
brainstem-based arch reflexes that mediate 
swallowing (ingestion) and gagging (rejec-
tion)14,22,23. TRCs transmit information to 
the peripheral nerves by releasing ATP24 
to P2X2/P2X3 purinergic receptors located 
on the postsynaptic membrane of primary 
afferents5,25–27. Other transmitters such as 
serotonin, glutamate and acetylcholine 
might also be released.

Transduction pathways for primary tastes. 
The key to understanding how TRCs trans-
duce chemical stimuli lies in determining 
the identification and operation of different 
types of taste receptor and their downstream 
signalling pathways4,6,28,29. Proteins belonging 
to the G-protein-coupled receptor (GPCR) 
superfamily have been established as the 
receptors for sweet tastants (taste receptor, 
type 1, member 2 (T1R2)/T1R3), amino 
acids (T1R1/T1R3) and bitter (T2Rs) 
tastants29–37. Selected downstream pathways 
for these receptors are shown in FIG. 1. The 
sensations associated with the other two 

primary tastants, sour and salt (NaCl), are 
mediated by ion channels of the transient 
receptor potential (TRP)38 and epithelial 
sodium channel (ENaC)39 superfamilies, 
respectively.

The transduction of sweet tastants 
involves the presence of heterodimeric T1Rs 
— that is, T1Rs containing two different 
subunits, in this case T1R2/T1R3 (REFS 

29,37,40). There seems to be only one type 
of broadly tuned receptor that subserves 
detection of both natural sugars and artifi-
cial sweeteners40. It is noteworthy, however, 
that saccharin can produce, in addition to 
sweetness, other interesting taste sensations. 
At high concentrations its sweet taste sensa-
tion is replaced by a bitter taste quality but, 
when the mouth is rinsed with water, a sweet 
‘water taste’ is perceived41.

Nearly all foods contain a variety of 
amino acids. The transduction of L-amino 
acids, including glutamate, is primarily 
accomplished through G-protein-coupled 
heterodimeric T1R1/T1R3 receptors42. In 
mice, the T1R1/T1R3 receptors are broadly 
tuned to respond to L-amino acids37,42, 
whereas the human T1R1/T1R3 receptors 
are more narrowly tuned to glutamate. Some 
studies in rodents suggest that T1R1/T1R3 
receptors might not exclusively transduce 
the response to glutamate43–45.

Homodimeric T2Rs (that is, those that 
contain the same two subunits) have been 
found to be both necessary and sufficient 
for bitter taste transduction and percep-
tion35. T2Rs are co-expressed in TRCs with 
gustducin, suggesting that this protein is part 
of the signalling pathway for bitter taste 
transduction. Indeed, α-gustducin-knockout 
mice have a decreased sensitivity to bitter 
tastants46. The T2R family contains about 
30 members35,47. Given the diversity of com-
pounds that taste bitter, it is not surprising 
that the number of T2Rs is large35,48. This 
selectivity, as well as the fact that individu-
als might be missing one of the receptors 
or have less sensitive T2R variants49 could 
explain why some people can eat certain 
foods with bitter tasting chemicals, such as 
brussels sprouts or broccoli, whereas others 
find them unpleasant. The latter group, 
however, retain their sensitivity to other 
bitter tastants50,51.

In rodents, at least, an amiloride-sensitive 
sodium channel from the ENaC/Deg 
superfamily primarily accounts for the 
transduction of NaCl52,53. Amiloride 
reduces, but does not completely eliminate, 
the responses to NaCl in TRCs and chorda 
tympani neurons54,55. However, whether 
and the extent to which human responses 

to NaCl are inhibited by amiloride remain 
controversial53,56.

In addition to the conventional salty 
taste of NaCl, salts with different cations 
and anions evoke different gustatory sensa-
tions57,58. The responses to these salts are not 
transduced by ENaCs and can be readily 
distinguished from NaCl54,55. Depending 
on the particular salt, they can be perceived 
as salty, bitter, metallic or astringent. 
Recent studies of TRCs in wild-type and 
TRPV1-null mice have indicated that this 
salt pathway might involve a capsaicin- and 
temperature-sensitive variant of a constitu-
tively active TRPV1 channel59,60. The final 
evidence for the involvement of this variant 
in amiloride-insensitive salt taste must wait 
until this receptor is cloned and shown to be 
functional in TRCs.

The molecular mechanisms involved in 
sour taste transduction have recently been 
uncovered. Genetic and functional studies 
identified one member of the TRP super-
family, the polycystic kidney disease-like 
ion channel PKD2L1, as necessary for sour 
taste transduction38,61,62. In fact, peripheral 
neural recordings from animals lacking 
PKD2L1-expressing taste cells indicated that 
they were completely unresponsive to sour 
tasting stimuli38. Importantly, this chan-
nel was found to be expressed in a subset 
of taste receptor cells distinct from those 
responsible for sweet, bitter and umami taste 
transduction38. When co-expressed with the 
related protein PKD2L3 in heterologous cells, 
PKD2L1 was found to be a non-selective 
cation channel that is permeable to calcium 
and sodium61. Furthermore, it can be sur-
mised from the nerve recording results38 that 
it is also permeable to protons63, at least in 
the absence of sodium. We note that this TRP 
channel has many characteristics associated 
with the amiloride-insensitive salt responses.

Finally, although the taste transduction 
processes described above were treated as 
if they operate independently, mixtures of 
tastants can interact in such a way that indi-
vidual transduction processes could become 
altered. For example, in the case of acid–salt 
combinations, acidic compounds can reduce 
the salty taste of NaCl3.

TRC modulation by non-sapid stimuli. 
Evidence for multisensory processing can 
already be found at the peripheral level 
of the gustatory system. One important 
example concerns the nerve responses to 
dietary fat. Many animals show a spontane-
ous attraction for lipids, and such behaviour 
raises the possibility that an orosensory 
system is responsible for the detection of 
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dietary lipids. Their intake is controlled 
by rapid orosensory stimuli and delayed 
postingestive signals64. Until recently, dietary 
fats and oils were believed to be sensed 
solely by their texture and/or viscosity65,66. 
However, recent studies in TRCs revealed 
that they express a fatty acid receptor/trans-
porter, CD36, which binds long-chain fatty 
acids (LCFAs)67 and facilitates their transfer 
into the cell68. When the Cd36 gene is inac-
tivated, preference for LCFA-enriched solu-
tions, normally observed in wild-type mice, 
is abolished. Further studies are beginning 
to elucidate the transduction machinery for 
LCFAs69,70.

TRCs also contain receptors for many 
circulating hormones and neuropeptides. 
Among these hormones are aldosterone 
and antidiuretic hormone (ADH), which 
enhance responses to NaCl by increasing 
the permeability of Na+ through amiloride-
sensitive sodium channels on the apical 
membrane of mammalian TRCs71,72 (see 
below; FIG. 1). TRCs also contain appetite-
modulating peptides, including leptin, 
neuropeptide Y (NPY)19 and cholecystokinin 
(CCK)73, as well as their receptors. The 
release of these peptides, and other com-
pounds such as serotonin, into the taste bud 
has been suggested to modulate, in an auto-
crine or paracrine manner, the responses to 
tastants5,19,74.

TRCs can also be modulated by other 
types of chemical compound. These 
include typical trigeminal stimulants such 
as capsaicin, tannic acid and menthol 
(see below). Physical variables, such as 
temperature, might also affect the ability 
of TRCs to transduce tastant information 
as evidenced by the fact that warming the 
anterior tongue produces a sweet sensa-
tion75,76. This phenomenon could arise as a 
consequence of the thermal sensitivity of 
TRPM5 channels in TRCs on the anterior 
tongue that have T1R2/T1R3 receptors77. 
A further degree of complexity arises when 
temperature interacts with other trigeminal 
stimulants, in such a way that their respec-
tive subjective perceptions are enhanced78. 
Together, these data indicate that, even at 
the level of taste buds, multiple non-sapid 
sensory and neuro hormonal factors can 
affect how gustatory information is 
processed.

Intra-oral somatosensory responses. As 
noted, TRC activation by sapid stimuli is 
concurrent with the activation of the oral 
somatosensory system. More precisely, 
taste buds are intercalated and surrounded 
by general sensory nerve endings from the 

trigeminal, glossopharyngeal and vagal 
nerves12. Some of these nerve endings 
contain thermoreceptors79,80, whereas 
others behave as rapidly or slowly adapting 
mechanoreceptors. These somatosensory 
receptors transduce information about the 
thermal, chemical and physical properties 
of foods81,82. For example, some general 
sensory nerve endings that contain 
thermo sensitive TRPV1 receptors also 
respond to the presence of spices, such as 
capsaicin, found in chili peppers83. These 
capsaicin-sensitive neurons are nociceptors 
that when activated release vasodilators 
such as calcitonin gene-related peptide and 
substance P. This increases the tongue’s 
temperature84, which in turn could affect 
the responses of TRCs to sweet tastants75. 
Other thermoreceptors, such as TRPM8, 
are activated by menthol and produce 
a cooling sensation85, whereas TRPV3 
receptors are activated by oregano, savoury, 
clove and thyme86.

Lowering intra-oral pH levels can also 
cause the activation of trigeminal neurons. 
This increase in acidity can produce an 
unpleasant burning sensation, or in the 
presence of CO2 (or carbonic anhydrase, 
which produces HCO–

3 and H+) can cause a 
pleasant tingling sensation87,88.

Interestingly, many of the general 
somatosensory nerve endings are also 
activated by the same chemicals that define 
some primary tastants, such as NaCl (FIG. 2), 
although this usually requires higher 
concentrations87,89. However, instead of 
encoding information about taste quality 
or concentration, these nerve endings 
signal the presence of compounds in foods 
that produce irritating, cooling or burning 
sensations, thereby providing inputs for the 
multisensory components of the gustatory 
system. Analogous processes occur when 
ethanol is placed in the mouth90, resulting in 
the burning sensation that accompanies the 
ingestion of alcoholic drinks.

Some chemically induced taste sensations 
fall outside the usual categorization of tastes. 
For example, the astringent (or dry) taste 
sensation produced by polyphenols — such 
as tannic acid, a compound found in tea, wine 
and unripe fruits — arises not from the 
activation of TRCs, but primarily from the 
precipitation of proline-rich peptides in 
saliva91,92.

In summary, the peripheral gustatory 
system extracts multisensory information 
from foods placed in the mouth, and conveys 
this information through multiple neural 
pathways to brainstem structures93 (FIG. 2).

Figure 2 | Salt intake is explained by input from both gustatory and trigeminal nerves. Plots 

showing that as the NaCl concentration increases, the salt intake (orange circles) initially increases 

until it reaches a maximum of 1% (weight (gm)/volume (100 ml)) (0.17 M). The intake then monotoni-

cally decreases until the rats do not accept any NaCl after 7% (weight/volume). With increasing NaCl 

concentration the chorda tympani, which innervates taste receptor cells, thereby providing an indica-

tion of taste responses (blue circles), shows an increase in activity. With increasing NaCl the activity 

— most likely from nociceptors — obtained from the lingual branch of the trigeminal nerve increases 

linearly (green circles). Note that the maximum fluid intake occurs when the lingual nerve activity is 

essentially zero and the intake decreases as the lingual nerve activity increases. So, the hedonically 

positive aspects of NaCl are signalled by responses of the chorda tympani nerve, whereas the hedon-

ically negative aspects of NaCl are signalled by the trigeminal nerve. Therefore, to explain the animals’ 

behaviour, sensory information from both neuronal pathways needs to be taken into account. Modified, 

with permission, from REF. 93 © (1968) Elsevier Science.
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Coding in the periphery. Historically, two 
schemes have been proposed in the taste 
literature to explain how taste processing 
is achieved through the interaction of 
TRCs with their associated afferent nerve 
fibres: the ‘labelled line’ model and the 
‘across-fibre pattern’ (or ‘distributed’) 
model94–96. The assessment of experimental 
data supporting either of these hypotheses 
constitutes an important source of debate 
in the field of gustatory physiology. The 
labelled line model purports that sensory 
information is processed through seg-
regated and feedforward circuitry that 
connects peripheral sensory receptors to 
higher-order structures in the CNS. By 
contrast, across-fibre pattern models pro-
pose that sensory fibres (or neurons) are 
broadly tuned, in such a way that stimulus 
identity and intensity are specified by a 
unique combinatorial pattern of activity 
distributed across populations of neurons. 

Here, we describe evidence from the PNS 
that supports both of these schemes.

Evidence in favour of the hypothesis that 
taste information transfer does not depend 
on labelled lines comes mainly from electro-
physiological recordings performed in and 
around the oral cavity. These studies indicate 
that both TRCs and peripheral nerves are 
broadly tuned to gustatory stimuli21,97–101. For 
example, in a patch clamp study performed 
in polarized rat TRCs, Gilbertson and 
colleagues98 found that a large percentage 
of individual TRCs responded to multiple 
gustatory stimuli. Similar results were found 
in a calcium imaging study97.

However, data obtained in non-human 
primates indicate that peripheral nerve 
responses to tastants are segregated (but 
not completely) in a manner that would be 
more consistent with a labelled line model102. 
Recordings obtained from the chorda 
tympani and glossopharyngeal neurons in 

different non-human primate species 
identified specific taste fibres that responded 
almost exclusively to one primary 
tastant20,103. Behaviourally, compounds that 
activated only fibres best tuned to sweet 
tastants were always preferred over water. 
Conversely, compounds that activate fibres 
best tuned to bitter tastants were rejected 
by animals, and consumed less than water. 
Accordingly, a good correlation between 
the type of fibre activated and the animal’s 
behaviour was obtained20,102.

The elegant genetic and functional stud-
ies of Ryba, Zuker and colleagues provide 
much support for the existence of peripheral 
gustatory labelled lines37. As described 
above, this stems from the observation that 
receptors for tastants that have the sensa-
tions of sweet, sour (acid), bitter and umami 
are present in largely non-overlapping 
populations of TRCs30,37,38,40. Although these 
experiments clearly indicate that at the 
level of TRCs these tastant pathways are 
segregated, there has been no demonstration 
that salt (amiloride-sensitive), fat and water 
transduction machinery is not found in any 
of these TRCs.

To determine whether the activation of 
different TRCs is hard-wired to behavioural 
responses in mice, the same investigators 
engineered animals that express a modified 
opioid receptor (RASSL) in sweet-responsive 
TRCs. When these animals were presented 
with a tasteless opioid agonist, they promptly 
ingested it. Conversely, when the same opiate 
receptors were inserted in ‘bitter cells’ (T2R-
expressing TRCs), the animals rejected the 
same tasteless opiate37. Moreover, by express-
ing T2R receptors in TRCs that normally 
respond to sweet tastants, the authors found 
that the mice became strongly attracted 
to bitter tastants35. These results seem to 
indicate that, regardless of the nature of the 
receptors present in TRCs, the activation of 
a given TRC and its associated nerve fibres 
triggers behaviours consistent with the notion 
that this complex (TRC plus afferent fibres) 
signals the presence of only one class of 
tastant stimuli (in this particular case, either 
hedonically positive or negative stimuli). 
However, these exciting results might not 
necessarily imply that tastant-specific labelled 
lines are present throughout the entire nerv-
ous system; rather, they might indicate that 
ingestive behaviour could rely on specific 
brainstem reflex pathways. This notion is 
supported by the finding that decerebrate rats 
can accept sweet and reject bitter tastants104. 
So, brainstem arch-reflex pathways could 
have contributed to the behavioural responses 
observed when exogenous receptors were 

Glossary

Amiloride
A potassium-sparing diuretic that inhibits epithelial sodium 

channels (ENaCs) in the kidney and in taste receptor cells.

Carbonic anhydrase
Family of zinc-containing enzymes that catalyse the rapid 

interconversion of carbon dioxide and water into protons 

and bicarbonate ions.

Cholecystokinin
(CCK). A peptide hormone secreted from the mucosal 

epithelial cells in the small intestine (duodenum) that 

causes the release of digestive enzymes from the pancreas. 

Peripheral and central administration of CCK reduces 

appetite.

Chorda tympani nerve
Branch of cranial nerve VII that innervates the front two-

thirds of the tongue and carries taste information to the 

brain.

Conditioned taste aversion
(CTA). This is a one-trial form of learning that occurs when 

a palatable tastant becomes aversive after pairing with 

gastric malaise.

ENaC/Deg
Epithelial sodium channel (ENaC)/degenerin (Deg) is a 

superfamily of ion channels involved in epithelial Na+ 

transport, mechanotransduction and neurotransmission.

Forebrain
The anterior portion of the brain that includes the 

telencephalon and the diencephalon. It contains the 

cerebral cortex, the thalamus and the hypothalamus.

Gap junction
A junction between two cells consisting of pores that allow 

the passage of molecules (up to 1 kDa).

Glossopharyngeal nerve
Cranial nerve IX, receiving sensory fibres from the posterior 

one-third of the tongue, the tonsils and the pharynx.

Greater superior petrosal nerve
Branch of cranial nerve VII that innervates the back of the 

tongue and palate.

Gustducin
A G protein that is almost exclusively expressed in 

taste cells.

Neuropeptide Y
(NPY). A member of the pancreatic polypeptide hormone 

family, this peptide is produced and released by cell groups 

located in the hypothalamic arcuate nucleus. Central 

administration of NPY increases food intake and 

metabolism.

Purinergic receptors
These receptors are ion channels that are activated by ATP.

Sensory-specific satiety
Term referring to a specific reduction in the reward value of 

a particular food that has been eaten until satiety.

Superior laryngeal branch
Nerve that arises from the inferior vagal ganglion inferior to 

the pharyngeal branch of the vagus nerve.

Temporal coding models
These models propose that information on taste identity 

and quality is encoded in the temporal structure of spike 

trains.

TRPM5
A cation channel member of the transient receptor 

potential superfamily (subfamily M, member 5). Regulation 

of TRPM5 by Ca2+ could mediate transduction in taste 

receptor cells. It is required for the normal transduction of 

sweet, bitter and umami tastes.

Umami
A Japanese word used to describe the fifth primary taste. It 

corresponds to the savoury taste of food as produced, for 

example, by monosodium glutamate. Umami taste is found 

in vegetables, fish, meats and cheese.
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placed in bitter- or sweet-responsive TRCs. If 
this were the case, decerebration of the geneti-
cally manipulated mice would not abolish the 
acceptance and rejection behaviours observed 
in these studies.

In summary, at the peripheral level 
one can find experimental support for 
both labelled line and across-fibre pattern 
models, sometimes in the same species, 
although recent data from genetic studies 
strongly favour the existence of labelled 
lines. However, the validity of either model 
at the periphery should not necessarily be 
generalized to CNS circuits. In contrast to 
the periphery, the CNS possesses the ana-
tomical structure required for multisensory 
integration and, in our view, this ability 
might determine a difference in coding 
strategies between the CNS and PNS. In 
fact, as discussed below, much of the current 
electroneurophysiological data describe 
gustatory processing as multisensory and 
distributed across several brain regions105.

Taste coding at the level of the brainstem

The nucleus tractus solitarius. Information 
derived from taste-responsive cranial 
nerves converges on the rostral division of 
the nucleus tractus solitarius (rNTS) of the 
medulla106. However, besides taste, the NTS 
is also targeted by somatosensory inputs 
relayed through the trigeminal system 
(FIG. 1)107,108. In addition, a subdivision of the 
NTS, the caudal NTS (cNTS), is the main 
target of visceral (vagal) afferent inputs that 
convey information about the physiological 
status of the gastrointestinal system109. So, 
even at its first central stage, the gustatory 
system presents the anatomical requisites 
for the integration of taste information with 
somatosensory and gastrointestinal signals.

Neurophysiological evidence shows 
that subpopulations of neurons located in 
different NTS subnuclei are sensitive to 
mechanical stimulation of the gut, such as 
gastric and duodenal distension110. In addi-
tion, gastrointestinal processes such as small 
intestinal nutrient concentration and CCK 
release have been demonstrated to produce 
increases in NTS neuronal activity111. This 
arrangement allows for modulation of the 
firing rate activity of NTS taste neurons by 
afferent vagal activity, such as that produced 
by gastric distention112.

These integrative properties also hold for 
the case of taste–somatosensory interactions. 
The firing activity of taste-related rNTS 
neurons can be modulated by trigeminal 
stimulation, as when lingual stimulation 
by tastants is preceded by capsaicin treat-
ment107,108. This effect is also obtained in 

the presence of other trigeminal-activating 
(irritating) compounds such as nicotine113. 
Interestingly, the rNTS also exerts controls 
over the production of orosensory behav-
iours, such as swallowing114,115, licking, 
chewing and mastication116. The existence of 
a topographical overlap between taste and 
orosensory maps has also been proposed to 
exist in the rNTS117.

Given their ability to integrate gusta-
tory information with signals from several 
sources, what do the electrophysiological 
data from tastant-sensitive NTS neurons tell 
us about their tuning properties? Despite the 
molecular marker evidence for the segrega-

tion of taste modalities in transduction 
pathways118, electrophysiological recordings 
in both rodents and monkeys have demon-
strated that NTS taste neurons are preferen-
tially broadly tuned119. Nevertheless, there is 
evidence for some degree of topographical 
segregation between neural responses to 
different taste qualities, such as the rostral 
versus caudal pattern reflecting responses 
in the rNTS to bitter and sweet tastants120. 
However, this same study shows that rNTS 
neurons that responded best to bitter tastants 
still exhibit a high sensitivity to sodium salts 
and acids. So, although there is evidence for 
some degree of segregation between taste 

Figure 3 | Anatomical overview of the central 
taste pathways. Electrical signals from cranial 

nerves VII, IX and X that contain information on 

the chemical properties of tastants are conveyed 

to the rostral division of the nucleus tractus soli-

tarius (rNTS) of the medulla, the principal visceral-

sensory nucleus of the brainstem. In the rat, sec-

ond-order fibres (that is, rNTS efferents) project 

ipsilaterally to gustatory centres in parabrachial 

nuclei (PBN) of the pons, from where a first (dorsal) 

pathway projects to the parvicellular part of the 

ventroposterior medial nucleus of the thalamus 

(VPMpc), the taste thalamic nucleus. The second 

(ventral) pathway includes direct projections from 

PBN to the central nucleus of the amygdala and 

lateral hypothalamus. In primates, however, the 

NTS projection fibres bypass the PBN only to join 

the central tegmental tract and synapse directly 

into the VPMpc, whereas the PBN seems to be 

dedicated to convey general visceral information 

(mainly through vagal afferents) to specialized 

thalamic nuclei. In either case, thalamic afferents 

then project to the primary gustatory cortex, 

which is defined as the VPMpc cortical target. The 

VPMpc also sends projections to regions neigh-

bouring the primary somatosensory cortex, adja-

cent to the precentral gyrus, and that overlap 

with cortical somatotopic sites for the face and 

oral cavity. The primary taste cortex projects to 

the central nucleus of the amygdala, from where 

gustatory information reaches the lateral hypo-

thalamus and midbrain dopaminergic regions. 

The primary taste cortex also projects anteriorly 

to the caudolateral orbitofrontal region, called 

the secondary taste cortex. Taste neurons in the 

caudolateral orbitofrontal cortex converge with 

cells receiving projections from the primary olfac-

tory cortex, which might have implications for 

flavour perception. The orbitofrontal cortex is also 

targeted by projections from the lateral hypotha-

lamus, allowing taste responses to be modulated 

by satiety states. Finally, cortical taste areas send 

afferents to the rNTS/PBN, allowing for top-down 

modulation of gustatory processing at the level of 

the brainstem. Blue, projections to rNTS; green, 

primary taste areas; red, projections to caudal 

NTS. Modified, with permission, from REF. 164 © 

(2004) Macmillan Publishers Ltd.
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qualities in terms of neuronal responses at 
the level of the brainstem, it should be noted 
that broad tuning seems to be a property 
held by most taste-responsive cells in the 
NTS. In another example, a recent study51 
found that although a subpopulation of NTS 
neurons responded exclusively to some bitter 
tastants, most of the other taste responses 
were broadly tuned51. This broad tuning 
of taste-sensitive neurons indicates that 
populations of NTS neurons might encrypt 
individual taste qualities via distributed 
codes121 (although it should be noted that it 
is not certain whether these broadly tuned 
neurons are direct targets of TRCs).

It has been argued that labelled lines and 
population codes are not the only mecha-
nism by which taste-specific information is 
represented in the rNTS. In an innovative 
study, DiLorenzo and colleagues showed that 
electrical stimulation of the NTS — under 
a specific temporal pattern, while rats lick 
water — might simulate the perception of 
bitter or sweet qualities122. When stimula-
tion with a temporal pattern representing 

sucrose was followed by malaise induction 
(systemic administration of LiCl), these 
authors observed that rats frequently gener-
alized their aversion to real sucrose stimuli. 
Replaying the ‘sucrose’ neuronal firing tem-
plate in the absence of malaise extinguished 
the aversion.

Do these results provide unequivocal 
evidence for a temporally structured, single-
cell code for taste quality in the rNTS? Not 
necessarily. Although the ‘sucrose-best’ tem-
plates were based on individual NTS cells, 
the current applied in these experiments 
activated a sphere of tissue of up to ~500 μm 
in diameter, suggesting the recruitment of a 
population and not of single cells; this might 
explain why a template from one rat was 
successfully applied to other rats.

Forebrain modulation of brainstem 
responses. The distributed properties of the 
neural functions associated with gustation 
can be illustrated by the ability of individual 
forebrain regions to modulate taste activity 
in the brainstem. In fact, many descending 

afferent fibres from forebrain structures 
converge in the rNTS. These include dense 
projections from the central nucleus of the 
amygdala, the lateral hypothalamus and the 
gustatory cortex123,124 (GC; the cortical region 
that specifically receives direct projections 
from the taste thalamic nucleus: see FIG. 3 
for details on the anatomy of central taste 
pathways). Electrical stimulation of each of 
these areas was shown to modulate neuronal 
responses to tastants in the rNTS125,126. 
Similarly, taste-responsive neurons 
in the parabrachial nucleus (PBN), the main 
target of NTS projections in rodents, are also 
modulated by forebrain electrical stimula-
tion127,128. Indeed, the same PBN neuron 
can be modulated by stimulation at all three 
of the sites mentioned above, indicating 
that single PBN cells integrate multiple 
descending forebrain inputs129. In addition, 
temporary inactivation of the GC, which 
gives off dense descending projections to 
both the NTS and PBN, induces a profound 
and selective effect in the across-unit pattern 
of neuronal response to sweet stimuli in both 
these brainstem nuclei125,130.

In summary, several independent find-
ings indicate that descending forebrain 
axons from various areas can selectively 
modulate brainstem taste-evoked responses. 
These data clearly show, at the very least, 
that taste processing does not involve simple 
feed-forward pathways. Rather, in real world 
situations where information has to be 
continually updated, gustatory responses 
that originate from the periphery are 
modulated by forebrain circuits and their 
projections to brainstem nuclei.

Taste coding in cortical circuits

Multisensory integration in the gustatory 
cortices. The next question to ask is whether 
the integrative and distributed properties 
of taste processing observed in specialized 
brainstem nuclei are also supported by 
gustatory-related cortical circuits. As we 
will see, this indeed seems to be the case 
for the GC.

Sparse and distributed representations, 
as well as temporal coding models, have been 
proposed to explain how cortical networks 
encode gustatory information14,131,132. Sparse 
representations were proposed in view of 
electrophysiological data obtained in awake 
monkeys which showed that single-neuron 
responses to various taste qualities and other 
sensory properties (for example, viscosity 
or temperature) can be highly specific133. 
However, a review of the literature revealed 
that the vast majority of the studies measur-
ing gustatory responses from GC neurons 

Figure 4 | Ensemble activity of OFC neurons 
discriminates and anticipates natural rewards. 
Panels a and b are colour-coded post-stimulus 

time histograms of eight simultaneously 

recorded orbitofrontal cortex (OFC) neuronal 

responses to sucrose and water, respectively. 

The times around licking initiation (at 0 s) are 

shown. Red colours represent maximal activity 

and blue the minimum activity of each single 

unit.  Although some similarities can be 

observed in the activation pattern of this neu-

ronal ensemble during the rat’s intake of water 

or sucrose, many differences were also evident, 

indicating that OFC neuronal ensembles might 

be used to discriminate between gustatory 

stimuli both when they anticipate what tastant 

is coming and also after it is tasted (see below). 

c | A graph showing the ability of the ensembles 

to discriminate between water and sucrose 

(mean±SE of 16 ensembles) during four time 

epochs: baseline (B), approach (A) and drinking 

(D). Note that on a single trial basis, the tempo-

ral dynamics of neuronal ensemble activity 

could rapidly identify the natural rewards 

in some ensembles, even before a licking clus-

ter started (A). Asterisks indicate statistical 

differences with respect to chance (50%). 

Presumably, this anticipatory effect was due to 

presenting the tastants in separate blocks and 

thereby allowing the animals to anticipate the 

tastants prior to drinking. These results suggest 

that ensembles of OFC neurons can monitor 

the intake of natural rewards by tracking the 

onset of a licking cluster as well as anticipating 

and rapidly identifying natural rewards (sucrose 

and water). Modified, with permission, from 

REF. 10  ©  (2006) American Physiological 

Society.

P E R S P E C T I V E S

896 | NOVEMBER 2006 | VOLUME 7  www.nature.com/reviews/neuro

© 2006 Nature Publishing Group 

 



–0.2 0.0 0.2

0 0 0 0

40

80

Sp
ik

es
 s

–1

Time (s)
–0.2 0.0 0.2

40

80

Time (s)
–0.2 0.0 0.2

40

80

Time (s)
–0.2 0.0 0.2

40

80

Time (s)

000
–0.2 0.0 0.2

0

40

80
Sp

ik
es

 s
–1

–0.2 0.0 0.2

40

80

–0.2 0.0 0.2

40

80

–0.2 0.0 0.2

40

80

–0.2 0.0 0.2
0 0 0Sp

ik
es

 s
–1

–0.2 0.0 0.2

40

80

–0.2 0.0 0.2

40

80

–0.2 0.0 0.2

40

80

0

40

80

MSG (0.1 M) NaCI (0.1 M) Sucrose (0.1 M) Quinine (0.0003 M)

MSG (0.025 M) NaCI (0.025 M) Sucrose (0.025 M) Water

MSG (0.075 M) NaCI (0.075 M) Sucrose (0.075 M) Quinine (0.0001 M)

have found them to be broadly tuned134,135. 
The broad tuning of single neurons suggests, 
once again, the need to rely on populations 
of such cells (FIGS 4,5) to define taste quality. 
Evidence for distributed gustatory processing 
in the GC is provided by the fact that taste 
identity, concentration and palatability are 
more efficiently decoded from neuronal 
patterns when the activity of populations of 
simultaneously recorded neurons are taken 
into account105,136.

Another fundamental property of corti-
cal taste processing is that it is fast. Most 
researchers who study gustatory coding at 
the cortical level have relied on average 
neuronal evoked activity, over several 
seconds after stimulus delivery, to measure 
potential correlations between taste quality 
and neural firing activity. As trained animals 
can detect and discriminate tastant stimuli 
in a single lick (~200 ms)137, such long aver-
ages of neuronal firing modulation (in the 
order of seconds) will probably represent 
many other parameters, such as hedonics, 
mouth movements and so on132. Recently, 
electrophysiological data collected in freely 
behaving animals have shed new light on 
this issue. In accordance with the timing of 
licking, we have shown that chemosensory-
specific information is conveyed by taste-
responsive GC neurons within 150 ms 
of stimulus delivery11 (FIG. 5). Moreover, 
individual GC neurons were shown to be 
broadly tuned, even to the extent that they 
can be responsive to both sucrose and 
quinine11,138, corroborating the need for 
population codes in the GC.

GC neurons were also shown to respond 
to various sensory stimuli11,132,139,140, 
suggesting an ability for multisensory 
integration. Indeed, the multimodality 
of cortical gustatory processing has been 
indicated anatomically, electrophysiologi-
cally84,107 and perceptually141,142. However, 
the detailed neural mechanisms under lying 
such multimodal integration remain 
elusive. Electrophysiological studies have 
demonstrated that the same GC neurons 
can respond to taste, somatosensory and 
olfactory inputs11,143 (although the exact 
function of these neurons in the forma-
tion of flavour percepts has not yet been 
elucidated). Indeed, several groups have 
shown that rat GC neurons are sensitive to 
both orosensory (for example, mouth/jaw 
movements, temperature) and gustatory 
inputs11,138–140. Recordings in the macaque 
GC showed that they preferentially respond 
to oral somatosensory or oromotor stimula-
tion144. In fact, the taste-responsive areas 
of the anterior insular (the putative human 

primary taste cortex) largely overlap with 
areas that represent somatosensory inputs 
from the oral cavity, which might account 
for the ability to sense the temperature and 
viscosity of food145,146. These findings high-
light the fact that somatosensory–gustatory 
integration is likely to be widespread in the 
mammalian GC.

As in the GC, the orbitofrontal cortex 
(OFC) — which contains the secondary 
taste cortex, defined as a direct target of 
the GC — neurons also show multisensory 
responses. For example, we recently reported 
that rat OFC neuronal populations are able 
to encode simultaneously the identity of 
a tastant as well as the temporal structure 
of rhythmic licking patterns performed to 
ingest that tastant10 (FIG. 4). More generally, 
data obtained in primates show that the 
OFC receives convergent somatosensory, 
olfactory and taste afferents. Indeed, taste-
responsive OFC neurons have also been 
shown to respond to the temperature and/or 

texture of foods147. Analogous multisensory 
responses have been found in the primate 
insula148 and amygdala133.

These findings further emphasize the 
relevance of multisensory processing as 
one of the keys to achieving a real under-
standing of the basic neural mechanisms 
underlying flavour perception. Clearly, 
flavour perception also depends on the 
convergence of gustatory and olfactory 
information, which occurs at multiple 
cortical and subcortical neural structures. 
Rapid taste and olfactory neuronal process-
ing have been described recently11,149, and 
some of their analogous properties might 
underlie the ability of the cortex to form 
multimodal taste–odour combinations150. In 
humans, detection of sub-threshold tastants 
is facilitated by combined presentations with 
odours141. Moreover, a region located in the 
anterior insular cortex has been suggested 
to perform integration of taste and olfactory 
inputs151–153 (FIG. 6).

Figure 5 | Taste processing in the gustatory cortex is fast. Rats were trained to receive tastants 

on a fixed ratio schedule (FR5) while gustatory cortex responses were recorded from implanted micro-

electrode bundles. In the FR5 protocol, rats licked a dry sipper spout four times and received a tastant 

only on the fifth lick (at 0 s). This figure presents the raster plots and post-stimulus time histograms of 

a neuron to four tastants at multiple concentrations. The neuron is broadly tuned, even to the extent 

that responses were evoked by sucrose and quinine. In addition, it is seen that gustatory cortical neu-

rons exhibit rapid (< 150ms) and reproducible responses to different tastants (for example, see 0.0003 

M quinine). The concentration profile might or might not be monotonic. Whereas the response to 

quinine is greater at the higher concentration, for sucrose the intermediate concentration elicits the 

largest response. Modified, with permission, from REF. 11 © (2006) Society for Neuroscience. 
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Modulation of taste responses by post-
ingestive factors. Efficient feeding behaviour 
does not depend solely on multisensory 
integration at gustatory central regions. The 
post-ingestive, metabolic consequences of 
ingesting nutritious compounds must also 
be computed in conjunction with taste iden-
tity. Taste perception is heavily influenced 
by previous experience and by the memory 
of the gastric consequences that followed 
the past intake of different types of food154. 
Animals can quickly develop aversion to 
a particular tastant if it is associated with 
the administration of a compound such 
as LiCl that produces gastric malaise. This 

phenomenon is known as conditioned taste 

aversion (CTA)155. Accumulating evidence 
indicates that there are also post-ingestive 
positive controls of ingestion. For example, 
rats trained to consume a flavoured solution 
paired with intragastric carbohydrate infu-
sions significantly increased their solution 
intake156. This indicates that brain regions 
sensitive to sapid stimulation integrate this 
information with the nutritive value of what 
is being ingested.

Gustatory responses in higher brain 
centres are indeed modulated by the animal’s 
physiological state, showing that taste-
related neurons could alter their preferred 

responsive category as a function of metabo-
lism. Evidence showing modulation of taste 
responses by satiety in the lateral hypothala-
mus and in the OFC comes mainly from pri-
mate (including human) studies. Rolls et al.157 
have shown that feeding to satiety decreases 
the responses of lateral hypothalamic 
neurons to the taste of a food that a monkey 
has been fed. However, the responses of 
the same neurons to other foods remain 
unchanged. This phenomenon, which is the 
neural representation of a behavioural pat-
tern known as sensory-specific satiety, was also 
observed in taste-sensitive OFC neurons158. 
These findings indicate that the pleasantness 
generated by the taste of a particular food, as 
well as its acceptability, decreases as animals 
become satiated, and that taste-sensitive 
neural circuits can represent these dynamic 
changes in reward value. However, this is 
specific to the particular food, as the animal 
might still be motivated to ingest other types 
of food, indicating the existence of neural 
mechanisms involved in diversifying the 
components of a diet. Functional neuro-
imaging studies in humans provide further 
evidence that the reward value of a tastant 
is represented in the OFC159. In particular, 
specific sub-regions of the OFC in humans 
represent the changing reward value of a food 
eaten to satiety160. Studies using sensory-
specific designs also confirm the role of the 
OFC in modulating taste responses according 
to physiological state161,162.

We have recently shown that simultane-
ously recorded populations of neurons 
located in several taste-sensitive forebrain 
regions can encode the current motivation 
of the animal to drink a sucrose solution8 
(FIG. 7). This encoding was shown to be 
distributed because only when combined in 
populations could gustatory neurons convey 
information on the motivation to ingest 
sucrose at different phases of a feeding cycle 
(that is, hunger–satiety–hunger phases). This 
corroborates further the view proposed here 
that gustation is a multimodal process, the 
complexity of which can only be captured at 
the neural level by distributed codes.

Conclusions

We have described evidence indicating that 
the central gustatory pathways make use of 
distributed, ensemble codes to achieve inte-
gration of taste, olfactory and somato sensory 
inputs reaching the brain from the oral cavity 
through highly specialized peripheral nerve 
fibres. In contrast to the highly specialized 
information transfers performed by TRCs 
and peripheral fibres, central gustatory 
processing seems to be distributed, probably 

Figure 6 | Functional MRI shows multimodal integration in the human taste cortex. a | Coronal 

section illustrating taste–olfactory integration in the human anterior insula and caudal orbitofrontal 

cortex (OFC)152. b | A horizontal section through the medial OFC where the subjective pleasantness for 

taste–odour mixtures is represented152. c | Axial sections showing the human insula at different heights 

(the most dorsal cut is shown on the left). The mid-posterior part of the insula responds to water in the 

mouth only when subjects are thirsty (red areas indicate a rewarding aspect of water), whereas a more 

anterior part is responsive independently of thirst (blue areas)163. Responses to water were subtracted 

from responses to artificial saliva. d | Region of the human primary taste cortex, in the anterior insula, 

responding for both a prototypical taste (sucrose) and highly viscous tasteless stimuli, showing integra-

tion of taste and somatosensory information in the taste cortex145. e | Region of the human taste cortex 

in the anterior insula responding to fatty oils in the mouth, subtracted from artificial saliva, showing 

responses to fat in the taste cortex145. f | Region of the medial OFC, adjoining the rostral anterior 

cingulate cortex, responding to both sucrose and fat in the mouth (subtracted from artificial saliva)145.

P E R S P E C T I V E S

898 | NOVEMBER 2006 | VOLUME 7  www.nature.com/reviews/neuro

© 2006 Nature Publishing Group 

 



N
or

m
al

iz
ed

 fi
ri

ng
 ra

te

N
or

m
al

iz
ed

 fi
ri

ng
 ra

te

Sp
ik

es
 s

–1

Trials

Trials

Trials

Trials

IT
I (

s)

0.50

0.46

0.42

0.38

0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100
0

100

200

300

400

500

600

0

0.1

0.2

0.3

0.4

0.70

0.75

0.65

0.60

0.55

0.50

a c

b d

as a result of its capa city for multimodal 
integration. Approaching the encoding of 
a gustatory stimulus in this manner will 
provide new insights into how information 
is encoded, beyond the theories that have 
been historically proposed to model the 
mechanisms by which taste quality is coded 
in the periphery. Indeed, how these sensory 
modalities are synthesized into a single per-
cept, which allows animals to rapidly decide 
whether to ingest or reject a particular food, 
is one of the great challenges in gustatory 
physiology.

However, the main conclusion to be drawn 
from this article is that many fundamental 
problems in this emerging field are still to 
be resolved. For example, what is the coding 
logic for multisensory integration? Would 
an ideal observer (that is, a hypothetical 
experimenter who has optimal performance 

on a discrimination task given the source 
noise) be able to identify, in a single trial, the 
components of a taste–olfactory–somatosen-
sory multimodal intra-oral input from the 
simultaneous activity of the corresponding 
primary sensory cortices? Or is such infor-
mation preferentially conveyed by a popula-
tion of highly integrative, multimodal single 
neural units? Note that this is a particular 
instance of the more general controversy 
related to the sensory specificity of neural 
responses to gustatory stimuli.

Another fundamental aspect concerns 
the influences of the metabolic state of the 
body on central taste representations. How 
does morbid obesity, or its malnutrition 
counterpart, affect the cortical representa-
tion of different tastants? How do abnormal 
circulating levels of glucose and insulin, such 
as those found in diabetes mellitus patients, 

modulate responses to sweet-tasting and 
other highly caloric compounds? Which 
neural mechanisms regulate flavour prefer-
ences that are independent of orosensory 
stimulation (post-ingestive effects)? Answers 
to these basic questions might help us to 
understand why we are so easily prone to 
over-consume highly caloric ‘tasty’ foods.
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