
The JAK/STAT Pathway

Douglas A. Harrison
Department of Biology, University of Kentucky, Lexington, Kentucky 40506

Correspondence: DougH@uky.edu

Cellular responses to dozens of cytokines and growth
factors are mediated by the evolutionarily conserved Janus
kinase/signal transducers and activators of transcription
(JAK/STAT) signaling pathway (Fig. 1). These responses
include proliferation, differentiation, migration, apoptosis,
and cell survival, depending on the signal, tissue, and cel-
lular context. JAK/STATsignaling is essential for numerous

developmental and homeostatic processes, including hem-
atopoiesis, immune cell development, stem cell maintenance,
organismal growth, and mammary gland development
(Ghoreschi et al. 2009).

Janus kinases (JAKs) were identified through sequence
comparisons as a unique class of tyrosine kinases that con-
tain both a catalytic domain and a second kinase-like

IL-6

gp
13

0

JAK1

JAK1

ISRE/GAS

SHP2

CIS

STAT3

STAT3

STAT3

STAT3

SOCS

SOCS3

Cytoplasm

Nucleus

CIS, SOCS1–3, Mcl-1,
Myc, cytokines, TFs, etc.

gp
13

0

IL-6R

Figure 1. The JAK/STAT pathway (simplified view).
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domain that serves an autoregulatory function, hence the
homage to the two-faced Roman god. They were function-
ally linked to STATs and interferon signaling in powerful so-
matic cell genetic screens (Darnell et al. 1994; Schindler and
Plumlee 2008). The JAK/STAT cascade is among the sim-
plest of the conserved metazoan signaling pathways. The
binding of extracellular ligand leads to pathway activation
via changes to the receptors that permit the intracellular
JAKs associated with them to phosphorylate one another.
Trans-phosphorylated JAKs then phosphorylate downstream
substrates, including both the receptor and the STATs. Acti-
vated STATs enter the nucleus and bind as dimers or as
more complex oligomers to specific enhancer sequences in
target genes, thus regulating their transcription (Fig. 2).

In mammals, there are four members of the JAK family
and seven STATs. Different JAKs and STATs are recruited
based on their tissue specificity and the receptors engaged
in the signaling event (Schindler and Plumlee 2008). In

invertebrates, the Drosophila JAK/STAT pathway has been
extensively studied and comprises only one JAK and one
STAT (Arbouzova and Zeidler 2006). Although the canon-
ical JAK/STAT pathway is simple and direct, pathway com-
ponents regulate or are regulated by members of other
signaling pathways, including those involving the ERK
MAP kinase, PI 3-kinase (PI3K), and others. Furthermore,
non-canonical JAK and STATactivities influence the global
transcriptional state through modification of chromatin
structure (Li 2008; Dawson et al. 2009).

Human JAK mutations cause numerous diseases, includ-
ing severe combined immune deficiency, hyperIgE syndrome,
certain leukemias, polycythemia vera, and other myelopro-
liferative disorders (Jatiani et al. 2010). Because of the caus-
ative role in these diseases and their central significance in
immune response, JAKs have become attractive targets for
development of therapeutics for a variety of hematopoietic
and immune system disorders (Pesu et al. 2008; Haan et al.
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Figure 2. The JAK/STAT pathway.
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2010). Owing to the pleiotropy of the JAK/STAT pathway,
agents that selectively perturb specific family members are
being sought.

Figures adapted by kind permission of Cell Signaling Technology (http://
cellsignal.com)
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