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First central synapse:

Rostral Nucleus of the Solitary Tract (NTS)
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Cluster Analysis :
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2nd Central Relays:
Parabrachial Nucleus and Thalamus

Medial Parabrachial Nucleus:
located in midbrain. Major relay to cortex for taste in rats.

Thalamus:
located in forebrain. Major relay to cortex for taste in primates.
(also receives PBN input and some NTS input in rats)
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10
Brainstem as “spinal cord” for taste input

Brainstem mediates “reflex” like behavioral and
physiological responses to tastants:

sweet, lo salt -> ingestive responses
licking, swallowing

bitter, sour, hi salt -> aversive responses
spitting, vomiting or gaping

sweet -> insulin release from pancreas
cephalic insulin response
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NTS sits on top of oral and visceral motor nuclei

NST
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Lick Rate as measure of responses to taste stimuli 12
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Taste Reactivity
measure orofacial responses to taste stimuli infused
directly into mouth.
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Taste Reactivity as “reflex” response

Stereotyped orofacial movements of the rat when mouth
infused with tastants - scored with slow motion videotapes

Ingestive: mouth movements, tongue protrusions

S0 R
FEX = 2;31%>L

Aversive:gapes,chin rubs, paw shakes
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Behavioral Response to Bitter correlated with
glossopharyngeal innervation in rats.

(4]
o
1

H
o
1

SHAM subjects
r=.81
p <.002

Gapes to Quinine
N w
o o

-

o
1

L]

/ L}

380 400 420 440 460 480 500 520
CV Taste Buds

15



Dedicated neural input to motor reflex

Glossopharyngeal nerve cut eliminates circumvaliate taste
buds, but they regenerate after 52 days (unless prevented)
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Dedicated neural input to motor reflex
Glossopharyngeal nerve cut reduces gaping unless regeneration

occurs
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Cross-Regeneration: posterior tongue drives gapes,
anterior tongue does not, regardless of cranial nerve
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Taste Reactivity as “reflex” response

Stereotyped orofacial movements of the rat when mouth
infused with tastants - scored with slow motion videotapes

1

Ingestive: mouth movements, tongue protrusions
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\ Aversive:gapes,chin rubs, paw shakes
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Behavioral Responses to Taste are innate:

resting water sucrose citric acid quinine

20

sucrose citric acid quinine

Newborns receiving tastants within minutes of birth:
sucrose elicits mouth smacking, swallowing, smiles
quinine elicits spitting, grimaces, crying

21



Hindbrain alone can generate behavioral
responses

cerebral cortex

cerebellum

decerebrate rat with only hindbrain intact

22
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Decerebrate Rats respond normally to Palatable Tastants
(also to aversive tastants, not shown)
SUCROSE INGESTED
CHRONIC DECEREBRATES
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@
-
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2
= [ ]Fed
-3
I Food Deprived
SESSIONS
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Human Hindbrain alone can generate
behavioral responses

citric acid quinine

hydroanencephalic babies with essentially no forebrain but
intact hindbrain have same responses




Cortical Taste Regions

Gustatory (insular) cortex
More segregation into taste specific regions

Orbitofrontal cortex

Multimodal integration

start to find “flavor-specific” cells
state-dependency

(i.e. motivational associations modulate firing)
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Intimate Relation of
Taste and Visceral Information
Taste ' Visceral
gustatory nerves vagus, area postrema
rostral NTS | caudal NTS
medial PBN : lateral PBN
ventral Insular Cortex | dorsal Insular Cortex
27

Plasticity of Taste Responses
Plasticity is a change in behavioral response to taste after some
manipulation.

Conditioned Taste Aversion (CTA)
palatable -> aversive

Sodium Appetite
aversive -> palatable

Other examples
eating disorders, learned preferences, estrogen effects,
metabolic state, etc.

Often requires the forebrain.
i.e. decerebrate rat cannot learn CTA, or express Na appetite




Conditioned Taste Aversion

Form of Associative Learning in which an animal avoids and rejects a food
after it is paired with a toxic effect.

saccharin + Treatment
No aversion
l / — —
saccharin water
learned
aversion

Requires forebrain, because decerebate rat cannot learn or remember a CTA.
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CTA After Contingent Intra-Oral Sucrose and LiCl
10 7
Sucrose Sucrose Sucrose
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Weight Gain L ¢ ¢ L
© 44
41 ® inraoral
Infusion
2
Y
Monday Wednesday Friday Monday
1st Pairing 2nd Pairing 3rd Pairing Final Test
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CTA Learning: A Change in Behavior

Unconditioned
Sucrose —» \\ —p Ingestive Responses
& Intake
Lict —»
Conditioned

Aversive Responses

Sucrose —» & Rejection




CTA Learning: A Distributed Neural Network

cerebral cortex

cerebellum

olf. bulb

consumption

sweet taste
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CTA Learning: A Distributed Neural Network

cerebral cortex

cerebellum

olf. bulb

7 toxic LiCl
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CTA Learning: A Distributed Neural Network

cerebral cortex

cerebellum

olf. bulb

rejection

sweet taste
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c-Fos as Marker of Neuronal Activity
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CTA After Contingent Sucrose and LiCl
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10 7
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Control: Non-Contingent Sucrose and LiCl
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Non-Contingent Sucrose

Contingent (CTA) Sucrose

CTA Learning: A Change in Neural Activity

Unconditioned
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& Intake
Lici —» | —» c-Fosin brainstem,
amygdala
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& c-Fos in brainstem,
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Sucrose —» \Q\\ —>
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Overlapping Distribution of c-Fos induced by LiCl or Cond. Sucrose
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Learning a new CTA requires the PBN
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Figure 2. Mean (=SE) 15-min fluid intake for control (sham) rats and for rats with parabrachial
nucleus lesions (PBNX) during baseline (dH:O). acquisition (1 and 2. and test (T) trials. The
conditioned stimulus was 0.3 M alanine. and the unconditioned stimulus was LiCl (0.3 M. 1.33
m/100 g body weight).

PBNX does not block Cond. "Somatosensory" Aversion
(Capsaicin paired with LiCl)
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Figure 5. Mean (=SE) 15-min intake of the conditioned stimulus 0.0} mM capsaicin) for control
(sham) rats and for rats with lesions of the parabrachial nucleus (PBNX) during acquisition (1. 2, and
3) and test wrials. During acquisition trials. all rats were injected with either saline or 0.15 M LiCl
(133 ml/100 ¢ body weight).




Salt Appetite

Induced by loss of sodium
by sodium-free diet, diuretic (e.g. lasix), or hemorrhage

Elevation of angiotensin and aldosterone
-> hypothalamus, amygdala -> taste centers

Requires forebrain, because decerebate rat cannot learn
or remember a sodium appetite.

PBN lesion also blocks sodium appetite.

Evidence in humans is slim.
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Sodium appetite in furosemide-treated rat 44
furosemide -> Na excretion, but allowed to drink H,0 overnight
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30% PEG hypovolemia: water and salt intake
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