2 Types of neurotransmitters

Classical **Neuropeptides** small molecules small large Size (4-100 a.a. polypeptide) (like single amino acid) **Synthesis** uptake or enzymes protein synthesis **Vesicles** small, large secreted proteins from RER filled by transporters **Duration** fast but short slow & long of action

Neuropeptides

Category	Peptide	Category
Hypothalamic releasing hormone	Thyrotropin-releasing hormone Gonadotropin-releasing hormone Somatostatin Corticotropin-releasing hormone Growth hormone-releasing hormone	Gastrointestinal peptides
Neurohypophyseal hormones	Vasopressin Oxytocin	
Pituitary peptides	Adrenocorticotropic hormone β-Endorphin α-Melanocyte-stimulating hormone Prolactin Luteinizing hormone Growth hormone Thyrotropin	Heart
Invertebrate peptides	FMRFamide ¹ Hydra head activator Proctolin Small cardiac peptide Myomodulins Buccalins Egg-laying hormone Bag cell peptides	Other

Peptide Vasoactive intestinal polypeptide Cholecystokinin Gastrin Substance P Neurotensin Methionine-enkephalin Leucine-enkephalin Leucine-enkephalin Giucagon Bombesin Secretin Somatostatin Thyrotropir-releasing hormone Motilin Atrial naturetic peptide Angiotensin II Bendykinin Sleep peptide(s) Calcitonin CalcRP² Neuropeptide Y Neuropeptide Y Neuropeptide Y Galanin Substance K (neurokinin A)

more variety, because combination of 4 to 100 a.a. (similar variety of receptors!)

Neuropeptides are cleavage products of prepropeptides

Neuropeptides are cleavage products of prepropeptides

Neuropeptides & classical NTs in same synapse, but different effects

Neuropeptide Receptors

- Usually G-protein-coupled receptors; may be multiple subtypes
- Agonists & antagonists derived by shuffling amino acid sequence
- Inhibition of specific endopeptidases can prolong synaptic activity
- Oral peptides digested; systemic peptides cannot cross blood brain barrier (but may act on circumventricular organs)
- non-peptide agonists and antagonists desirable

Colocalization (or not) with classical transmitters

NPY with NE in adrenal medulla, sympathetic nerves, locus coeruleus (but NE not in NPYergic cells of cortex, hypothalamus, etc.)

CCK in endocrine cells of the gut, and DA cells of the midbrain (but DA not in CCKergic cells of cortex, etc.)

How to detect Neurotransmitters

	Classical small molecules	Neuropeptides
histochemical	Neurotransmitter itself	Neuropeptide itself
proteins	transporter or enzymes	Neuropeptide itself
mRNA	enzyme, transporter gene expression	Neuropeptide gene expression

Nuclear Receptor Hormones

- 1. Lipophilic molecules that pass through membranes
- 2. Coordinate peripheral and central neural response
- 3. Release regulated by synthesis
- 4. Bind to cytoplasmic/nuclear receptors
- 5. Receptors bind to DNA, affecting gene transcription
- 6. Can have non-genomic (immediate) effects

1. Lipophilic Hormones

made up of sterol ring structures or long-chain hydrocarbons that easily cross lipid bilayers

Steroids:

corticosterone - stress, mobilization of glucose aldosterone - sodium homeostasis estrogen - reproductive organs, sex. characters progesterone - reproductive organs testosterone - sex. characters

Lipophilic hormones: thyroid hormone - metabolism by tissues retinoic acid - development

steroid/ thyroid/retinoid/sterol/xenobiotic/orphan receptor superfamily (48 family members in man, 49 in mouse).

Thyroid Hormone and Retinoic Acid

all-trans-retinoic acid

2. Peripheral Communication to Brain

Steroids:

corticosterone - adrenal gland aldosterone - adrenal gland estrogen - ovaries progesterone - ovaries testosterone - testes

Lipophilic hormones:

thyroid hormone - thyroid gland retinoic acid - diet (Vitamin A), liver

Central Effects on Behavior parallel Peripheral Physiological Effects

Steroids:

corticosterone - feedback on stress system aldosterone - induces salt appetite estrogen - reproductive behavior progesterone - reproductive behavior testosterone - reproductive behavior

Lipophilic hormones:

thyroid hormone - GI, temperature, feeding retinoic acid - neural development, (adult?)

Steroids often potentiate neuropeptide systems

examples:

glucocorticoids and NPY on feeding aldosterone and Ang II on salt appetite

Hypothalamic Pituitary Adrenal (HPA) Axis & Stress

- 1. Feedback loops of the HPA regulating cortisol release
- 2. Classic disorders of the HPA: synthetic enzyme disorders, Addisons, Cushings.
- 3. Use of feedback loops for diagnosis of HPA problems
- 4. Psychological Stress: limbic activation and disregulated stress models

Hypothalamic Pituitary axes

Hypothalamus regulates pituitary function with releasing and release-inhibitory hormones

- releasing hormones -> pituitary to cause release of stimulatory hormones -> target glands activity
- inhibitory hormones -> pituitary to suppress release of stimulatory hormones -> target gland activity *(esp. dopamine -> less prolactin)*
- Transection of infundibulum -> decrease of all pituitary hormones <u>except</u> increased prolactin.

Hypothalamic-Pituitary pathologies:

Hypersecretion due to

tumors

lack of negative feedback

inappropriate synthesis/degradation

Real or Functional Hyposecretion due to

lack of releasing/trophic hormones lack of synthetic enzymes lack of receptors

Definition of Stress

Perturbation from homeostasis (maintenance of the constant internal environment)

"Fight or Flight" defined in 1900s by Cannon

Defined in 1930s as general response to "stress" by Selye in war veterans.

increase in gastric secretion

increase in adrenal secretion

suppression of immune system

The Stress Response and the Hypothalamic-Pituitary-Adrenal Axis

stress (neural input, disease, learned response)

- -> parvocellular PVN of hypothalamus
- -> corticotropin-releasing hormone (CRH) cells
- -> immediate response & long-term response

CRH also known as corticotropin-releasing factor (CRF)

Long-Term Response to Stress: secretion of mineralo- & glucocorticoids

3. Release regulated by synthetic enzymes

Because lipophilic, can't store in vesicles.

So, release is generated by "production on demand"

e.g. stress -> increased conversion of cholesterol to corticosterone.

Local effects can be regulated by converting enzymes in the target tissue.

e.g. testosterone -> converted to estrogen in target neurons.

Tissue specific targeting of Cortisol vs. Aldosterone to Mineralcorticoid Receptors 11β hydroxysteroid dehydrogenase Type 2

Dexamethasone suppression test

preRX with artificial GC (dexamethasone) suppresses cortisol response to CRH injection

note:

can use suppression test to assay functioning of internal feedback loops

Psychological Stress

No immediate threat to homeostasis

Hard-wired and Learned Sensory stimuli

- -> Amygdala, Limbic systems
- -> Fear & Stress Responses

Chronic stress

- -> increased GC
- -> cell death in hippocampus, cortex, amygdala
- -> impaired memory, depression
- -> disregulated stress response.

Early stress

- -> disregulation of stress response
- -> reversal by environmental enrichment

Science. 1966 Aug 12;153(737):767-8.

Hippocampal Stimulation -> cortisol decrease Amygdalar Stimulation -> cortisol increase 17-Hydroxycorticoids in plasma: Patient Location of stimulation maximum change from control amount (%) 1 R-CA 2 hippocampus (histopath.) -28 2 R-basolateral amygdala (histopath.) +123 3 3 3 R-hippocampus (stereotaxic) -- 88 L-subiculum hippocampus (histopath.) -90-R-basolateral amygdala (stereotaxic) +360L-basolateral amygdala (histopath.) +232+4154 Anterior to L-amygdala (histopath.*) 4 L-anterior hippocampus (histopath.*) -18 4 L-CA 1 hippocampus (histopath.) -100 -----

* Unverified.

HPA Disregulation

Chronic mild stress as in poverty -> increased stress response

Genetic differences as in rat strains -> increased stress response

Clinical relevance: Post-traumatic stress disorder (PTSD) & childhood abuse

Site of disregulation: hippocampus

in the limbic system, not hypothalamus or pituitary

Features of Stress

- 1. During acute stress, stress response declines in amplitude over time
- 2. After repeated stress, stress response adapts and stressor becomes less stressful
- 3. Both these characteristics can become disregulated.

Adaptation to repeated stress

Sprague Dawley & Lewis rats adapt to repeated stress (their adrenal glands remain normal size).

Fisher rats show increase in size of adrenal gland with repeated stress (i.e. stress continutes to elevate ACTH).

Animal Model: Early Maternal Separation

-> enhanced stress response

Maternal Separation = pups removed from mom for 3 h/day on PN days 1-14

Adults have increased positive feedback, decreased negative feedback

HPA Component	Adult after neonatal handling	Adult after neonatal separation
RH mRNA (PVN)	\downarrow	1
RH mRNA (Amygdala)	Ļ	ſ
RH mRNA (locus ceruleus)	\downarrow	1
H Receptor Binding	Ļ	î
corticoid Receptors (Hippocampus)	Ť	\downarrow
corticoid Receptors (PVN)	No effect	\downarrow
feedback inhibition of CRH	Ť	\downarrow

Reversed by Enriched Environment

Addison's disease

Extreme adrenal steroid deficiency

- Caused by autoimmune or infectious destruction of adrenal cortex.
- Extreme intolerance of stress, loss of appetite, malaise, fasting hypoglycemia, low blood pressure, salt craving

No glucocorticoids, so:

- -> no negative feedback
- -> hypersecretion of ACTH
- -> hyperpigmentation of skin (because ACTH acts as melanocyte-stimulating hormone)
- Treatment: administer exogenous corticosteroids to replace function of adrenal cortex

Addison's disease - low corticosteroids, elevated ACTH

- Note the generalised skin pigmentation (in a Caucasion patient) but especially the deposition in the palmer skin creases, nails and gums.

www-clinpharm.medschl.cam.ac.uk

4. bind to cytoplasmic/ nuclear receptors

5. Nuclear receptors bind to target genes and regulate transcription

Glucocorticoid R Mineralcorticoid R Estrogen R α and β Progesterone R Androgen R

estrogen induced protein ERE

Thyroid R α and β , RX R RA R α , β , γ estrogen response element

Have ligand-binding domain, DNA-binding domain, and homomer binding domain (so can transgenically mix and match ligands and induced genes)

0 min 5 min 15 min 30 min 45 min 60 min

Long-term, genomic effects of N.R. hormones

Because the nuclear receptors bind to DNA, their effects are necessarily genomic (e.g. not directly ionotropic or metabotropic)

They induce protein synthesis.

It can take hours or days before an effect is seen.

Nicholson, Frontiers in Bioscience 9, (2004) 32-39

Figure 6. A schematic model of CRH promoter regulation in the hypothalamus. The nGRE is a negat glucocorticoid regulatory element, CRE is the cAMP regulatory element, GRR represents the region located between -213 to -99 bps that is stimulated by glucocorticoids, CDXRE is caudal type homeol response element and TATA is the TATA box. Stimulatory (+) and inhibitory (-) regulatory effects by cAMP and glucocorticoids through the different elements (thin arrows), negative (thick arrow) and synergistic stimulatory (double headed arrow) interactions between sites is shown.

Integrated actions of Classical, Neuropeptide, and Nuclear Receptor Transmitters

6. Short-term, non-genomic actions of steroids

1. steroid receptor can have non-genomic effect

e.g. ERa ligand-binding domain can activate MAP kinase in cytoplasm

2. steroid can directly modulate membrane receptor

e.g. progesterone can modulate GABA-A ionotropic receptor via membrane-spanning domains

e.g. estrogen can bind GPCR GPR30 to stimulate cAMP

Test by using membrane-impermeant form of steroid, e.g. estrogen-albumin conjugate