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I. Introduction

The availability of model organisms harboring mutant variants of genes involved in
any biological process is essential for understanding the complexity of these pro-
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144 Molecular Regulation of Arousal States

cesses at a molecular and biochemical level. A dream of many neurobiologists,
including sleep researchers, is to identify and isolate a candidate gene for a control-
ling element of a neurobiological system or a behavior, based on previous physio-
logical, anatomical, or pharmacological studies. However, the final role and function
of a particular gene can only be ascertained by the analysis of the aberrant phenotype
in mice with a null mutation of this gene. The mouse is particularly useful as a
model in such studies because of the potential of using targeted mutagenesis in
embryonic stem cells.'> Although genetic differences have been found in sleep
parameters such as total and paradoxical sleep times, circadian rhythms of sleep and
the diurnal ratio of total sleep,> the identification of single-gene mutations affecting
sleep is hampered by the invasive techniques necessary to study sleep correlates.
Nevertheless, the recent analysis of prion protein-deficient mice would support the
argument that a single gene can affect specific sleep parameters.” Due to the paucity
of candidate genes for key regulators of sleep—wakefulness, we are using random
mutagenesis to screen for potential sleep mutants among lines of mice with abnormal
rest:activity cycles. This approach involves mutagenesis of the whole genome with
a potent chemical mutagen, such as N-ethyl-N-nitrosourea (ENU),%? and the gener-
ation of a large number of progeny (Figure 12.1). Subsequent screening for the
presence of behavioral anomalies may reflect the disruption of gene(s) with a general
effect on daily activity cycles (for a review see reference 10).

This chapter explores current and potential applications of random chemical
mutagenesis to identify novel rest:activity mutations in the mouse. We describe the
mutagenesis procedures and behavioral assays and constraints of genetic analysis
in the study of rodent behavior. Fully computerized and automated online systems
for monitoring wheel-running behavior can be used to simultaneously screen a large
number of progeny of mutagenized mice. Analysis of wheel running activity records
in light:dark (LD) conditions may provide a prescreen for potential sleep—wake
mutants. Based on the statistical analysis of behavioral parameters which can be
extracted from the activity records of a large number of tested progeny, several
potential mutants with a strikingly different behavioral profile from the norm can
be identified. The heritablity of alteration in wheel running rest:activity behavior in
these candidates can confirm that the behavioral anomaly is due to a genetic defect.
Although monitoring wheel running activity may be sufficient to identify novel
mutations affecting circadian behavior,''> potential mutants will have to be exam-
ined by electroencephalographic and electromyographic recording and sleep-depri-
vation assays in order to test whether they affect arousal, wakefulness, or sleep
(Figure 12.1). Circadian rhythms of sleep—wakefulness in general covary with wheel
running rest:activity cycles. However, concomitant monitoring of EEG recordings
and wheel-running has shown periods of “quiet” wakefulness during the wheel
running rest phase and fragmented REM and NREM sleep during the active phase
of the circadian wheel-running cycle.!>!* In addition, exercise'> or access to activity
wheels'®'7 can modify sleep patterns in mice, indicating that a prescreen could
potentially identify mutations that disrupt the coupling between locomotor activity
and sleep homeostasis.

In several model organisms, such as Drosophila melanogaster, C. elegans, and
zebrafish (references 18, 19, 20, 21 and other papers in Development, Vol. 123), large-
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FIGURE 12.1

ENU mutagenesis. Young (8 to 10 weeks) C57BL/6] male mice are injected intraperitoneally with the
chemical mutagen N-ethyl-N-nitrosourea (ENU). After a period of sterility (on average 12 to 15 weeks),
mutagenized (GO) males are mated with C57BL/6] females. Progeny from this cross (G1), harboring
many different induced mutations on one of their parental chromosomes, are screened for potential
dominant or semidominant rest:activity mutations. Families of mice that are selected on the basis of
aberrant wheel-running activity can then be tested for the heritability of the abnormal behavior and can
be used to define the physiological and anatomical basis of the abnormality.

scale mutagenesis experiments for recessive and dominant mutations involve screen-
ing thousands of progeny of mutagenized individuals for the desired mutant pheno-
type in subsequent generations. In the mouse, extensive mutagenesis screens have
not been performed due to the expense of mouse maintenance. Therefore, current
efforts to recover a large number of recessive mutations are restricted to relatively
short stretches of the mouse genome?>2*; or are aimed at the identification of recessive
visible mutations in a known gene.?> However, a one-generation screen for dominant
phenotypes may also provide an efficient way to recover novel mutations. For exam-
ple, Clock, the first mutation which controls circadian behavior in the mouse,'! and
Wheels, a developmental mutation which alters circadian activity and responses to
light (references 12, 26, and Nolan, Alavizadeh, Lo, and Bucan, unpublished), were
identified in screens for mutants with a dominant mode of inheritance.

The frequency of mutations at any given gene induced by ENU is 1.5 x 1073
per locus, per gamete?” which, in effect, means that 1 of 750 progeny of mutagenized
individuals should harbor a point mutation in any gene of interest. In the
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one-generation screen for dominant mutations, populations of progeny for testing
are generated by mating mutagenized mice (males) with wild-type females. However,
in a screen aimed at the identification of recessive mutations, where the mutant
phenotype is detectable only in individuals with two copies of the mutated gene, a
complex three-generation breeding scheme has to be used.

The ultimate goal of the mutagenesis screen described in this chapter is to
identify single gene mutations with a profound effect on rest:activity behavior.
However, in a dominant screen for behavioral mutants even mutations causing minor,
but stably inherited, changes will be of great value; subtle changes in heterozygotes
may be associated with a more severe phenotype in homozygotes, as shown for the
Clock mutation.'! To facilitate genetic analysis of these subtle mutations it is impor-
tant to maintain them in a homogeneous genetic background; both mutagenized and
wild-type progenitors (GO in Figure 12.1) should be of the same inbred strain.
Analysis of a behavioral parameter, such as circadian period (Tpp), in a large number
of genetically homogeneous progeny of mutagenized mice will give a continuous
distribution of T, values, where the individual outliers may represent either 1)
normal variance in the population, 2) an ENU-induced single gene mutation, or 3)
may be caused by multiple mutation events in several genes. Mating of individuals
with extreme behavioral phenotypes with wild-type mice will provide the critical
test of heritability of the mutant phenotype, as well as its mode of inheritance

lI.  Methodology

A. Mutagenesis Protocol and Breeding Scheme in a Screen for
Dominant Mutations

The procedure for chemical mutagenesis involves administration of the mutagen N-
ethyl-N-nitrosourea (ENU) to 7 to 10-week-old mice with three weekly doses of
100 mg/kg by intraperitoneal injections. A repeated ENU administration protocol
has proven to be highly efficient and ensures a greater survival rate for mutagenized
animals.?” Since ENU is mutagenic for mouse spermatogonial stem cells, success-
fully mutagenized animals will be rendered temporarily sterile. In a typical case,
new rounds of spermatogenesis will cease for 10 to 15 weeks, after which surviving

‘mutagenized spermatogonial stem cells repopulate the testis. At four weeks after
administration of the mutagen, ENU-treated males are caged individually with two
fertile females of the same genetic background (males remain fertile for a few weeks
after ENU application). If females become pregnant during this transitional period,
it will be an indication that the mutagenesis was unsuccessful and treatment will be
repeated. However, restored fertility after a three-to-four month sterile period will
likely indicate efficient mutagenesis. Based on the results with mutations identified
to date,?® we found that by collecting and analyzing no more than 50 to 75 generation
1 (G1) progeny from a single mutagenized male, we have a low chance of recovering
the same mutation multiple times.
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B. Behavioral Assays

Mice, 8 to 14 weeks old, are housed individually in cages equipped with running
wheels, with food and water freely available. Cages are maintained in light-tight,
ventilated chambers (10 cages to a chamber), with timed lighting. Each animal’s
wheel-running activity is monitored continuously, via a microswitch located on the
outside of each cage. Microswitch closures for 120 cages are automatically recorded
and stored on an IBM computer-based data acquisition system (developed by Ralph
Mistlberger, Simon Fraser University, British Columbia, Canada). Behavioral analysis
is conducted under LD (12 hours light:12 hours dark) conditions for 7 days to assess
the ability of mice to synchronize or entrain to the LD cycle, followed by 3 weeks
of monitoring in constant dark (DD) conditions to screen for “clock gene” mutations
(i.e., mutations which either shorten or lengthen the endogenous circadian period).

C. Data Analysis of Wheel-Running Activity by the
Circadia Program

A Macintosh-based interactive program, Circadia, is used to rapidly visualize, ana-
lyze, and quantitate the rhythmicity and activity of mutant mice. Circadian rhythms
can be characterized by three quantitative parameters: period, phase, and amplitude.?
Changes in these parameters may reveal an altered central circadian clock, altered
coupling between ambient light cycles and the clock (e.g., due to changes in visual
system sensitivity), or altered coupling between the clock and the physiological and
behavioral processes it regulates (e.g., sleep and activity cycles). Circadia employs
standard plotting styles and time-series algorithms that have been extensively used
and validated by the circadian rhythm community.

For nocturnal mice, entrained and free-running periods should be assessed under
both an ambient light-dark (LD) cycle and under constant-dark conditions (DD)
(Figure 12.2 A). Wheel running activity can be visualized through ten different
plotting styles with Circadia, from a spreadsheet view of individual data points to
a strip-chart format. Circadia can calculate periodicity from as little as 7 to 10
consecutive days of data using several algorithms: %> periodogram, which estimates
period by minimizing variance when averaging data across cycles,” autocorrela-
tion,3! linear fitting to activity onsets or offsets, cosinor analysis (estimating the
coefficients of a sinusoidal function by least squares fit to the entire data set).3? These
routines can be used to screen for period changes, including significant deviations
of the period from 24 h under LD, significant lengthening or shortening of the period
undet DD, changes in ultradian or infradian rhythms, and arhythmicity.

The phase relationships of circadian rhythms are calculated with reference either
to external cycles (i.e., the time of activity onset and offset relative to the time of
lights-on or lights-off) or by the phase of internal rhythms relative to a reference
phase marker; for example, the timing of daytime activity bouts (internal rhythms)
relative to the onset of subjective night (reference phase). Circadia’s autocorrelation
and cosinor analyses can explicitly calculate phase parameters for circadian rhythms,
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FIGURE 12.2

Wheel-running activity patterns in a typical C57BL/6]J mouse and in mice with abnormal rest:activity
parameters. Typical activity records for a C57BL/6J mouse A-C. Expression of wheel-running data in all
three formats may be useful in the identification of potential rest:activity mutants: A) Double-plotted
actogram raster plot of wheel-running (indicated by deflections from baseline) over 40 consecutive days
under LD (days 0 to 10) and DD conditions. Dense horizontal light and dark bars represent periods of
light and dark in LD, and the asterisk represents the day of transition from LD to DD. Variations in the
amount, bout-distribution, periodicity, and phase of wheel-running activity are immediately obvious by
visual inspection. Note the shortening of circadian period under DD, the greater precision of activity onset
compared to activity offset, the brief period of inactivity in the middle of subjective night (arrow), and
the short burst of activity in early subjective day (arrowhead). The ability to generate raster plots of the
activity patterns of large numbers of mutants rapidly may be sufficient to identify qualitatively obvious
mutants, but the statistical analysis of endogenous variation and the detection of significant changes
requires additional quantitative computational analysis. B) The mean activity waveform (circadian time
vs. mean revolutions/5 min bin) of the last 30 days under DD of the activity record in (A) averaged at
the free-running period. The intersection of x and y axes represents circadian time 0 (CT0). The mean
waveform is the first step in quantitating activity patterns, followed by determining period by x? peri-
odogram and rest:activity ratios by bout analysis. Arrows as in (A). C) The same activity record as (A)
plotted in strip-chart format, as clock-time vs. revolutions/5 min bins. Although circadian parameters are
less obvious, the strip chart reveals the consistent amplitude of wheel-running (~300 revolutions/5 min)
during almost all bouts of activity, as well as periods of inactivity during subjective night and bouts of
activity in subjective day. Arrows as in (A). D) Double-plotted actogram of a representative animal with
a short circadian period (22.61 h) in LD and DD conditions. The asterisk represents the time of transition
from LD to DD. Activity onsets are similar to (A) in LD conditions, but note the masking effect seen
upon entry into DD, high levels and fragmentation of activity in subjective day, and the earlier daily onset
of activity in DD relative to (A). E) Double-plotted actogram of a representative animal with a circadian
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but are computationally intensive. Reliable phase estimates may be rapidly calculated
in Circadia by the automatic detection of activity bout onsets; the timing of activity
onsets or offsets may then be directly compared to the phase of the light cycle.
Generating mean daily activity waveforms averaged and plotted at the entrained or
free-running period also makes changes in circadian phase immediately obvious
(Figure 12.2 B).

The amplitude of a circadian rhythm is estimated by the number of wheel-
revolutions per bin at different phases of the circadian cycle, and by the total duration
and amount of wheel-running activity. Circadia can directly quantitate wheel-run-
ning within user-specified blocks of the daily cycle. For example, the number of
revolutions can be calculated for a large number of mice for each quarter of the
circadian cycle, to determine if there are significant changes in late subjective night
or subjective day activity, or overall rest:activity ratios. Circadia can perform auto-
matic bout analysis to detect ultradian rhythms in activity timing that may be
modulated by the circadian system. The initial screening may reveal alterations not
in circadian rhythmicity per se, but in locomotor activity that would require noncir-
cadian analyses (e.g., sleep analysis or open-field activity). Dissecting the mutational
effects on locomotion and circadian rhythms is complicated by the feedback effect
of activity on the circadian clock.'®

D. Selection of Potential Rest Activity Mutants

To identify potential mutants, wheel-running activity of progeny of ENU-treated mice
is examined in LD and DD conditions. Almost all G1 progeny exhibit robust activity,
typical of most inbred mouse strains.**3* Based on the previously reported values of
23.7 +0.17 hours for the Ty, of circadian activity in C57BL/6J mice,!!'>3* any mouse

FIGURE 12.2 (Continued)

period greater than 24 h. Asterisk as in (D). Activity onsets are similar to (A) in LD conditions with a
later daily onset of activity in DD relative to (A). No masking effect is evident and activity in subjective
day is lower than in (A). Note also the periods of inactivity in subjective night. F) Double-plotted actogram
of a representatvie animal with an advanced phase of wheel-running activity. Asterisk as in (D). Note in
LD, wheel-running activity starts approximately 3 to 4 h prior to lights-off and the unusual activity onset
at lights-on. The circadian period for this animal is comparable to (A) although there appear to be two
activity onsets. Wheel-running activity is relatively robust, although there are brief periods of inactivity
in subjective night. Subjective day activity is low. G) Double-plotted actogram of a representative animal
with a long wheel-running activity phase (o, 18.6 h) in DD. Note that although the time between activity
onsets and offsets is greater than in (A), the amplitude of wheel-running activity bouts is somewhat lower
with fragmentation of wheel-running activity throughout the subjective night period. Circadian period is
within the normal range for C57BL/6J mice. H) Double-plotted actogram of a representative animal with
a short o (9.5 h) in DD. Circadian period is within the normal range for C57BL/6] mice. Activity in
subjective night is robust, with several short bouts of activity in subjective day. I) Double-plotted actogram
of a mouse in DD showing an unusual burst of activity in the subjective day period. Circadian period and
activity levels in subjective night are within the normal range for C57BL/6J mice. Although it is usual to
see bouts of wheel-running activity in mice at the beginning of subjective day, the activity seen here is
in the middle of subjective day and is more robust than in the typical case.
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with a Ty, shorter than 23.10 or longer than 24.30 hours is selected for further analysis.
Activity records for two mice that display significant shortening and lengthening of
circadian period are illustrated in Figure 12.2 D and E. A visual observation of the
onset of activity in relation to the offset of light in LD conditions allows selection of
potential mutants with an early activity phase, where onset of activity precedes the
offset of lights (Figure 12.2 F). Based on our data, some nongenetic factors, such as
age or light intensity, may influence the precision of activity onsets.

Locomotor activity records of progeny of mutagenized mice can be analyzed
to determine the variation in the length of the activity phase (o). Figure 12.2 G and
H illustrate the activity records of two mice with extreme long (18 hours) or short
(9 hours) activity phases (o), while circadian periods for both mice are within the
normal range. Activity record Figure 12.2 I shows an individual characterized by an
additional block of activity during the subjective day (under DD). Although activity
at the beginning of subjective day is often noted in C57BL/6J mice, bouts of activity
for this mouse occur with extreme regularity, are robust, and occur in the middle of
subjective day. The circadian period for this mouse lies within the normal range.

Determining the basic circadian parameters of period, phase, and amplitude is
only the beginning of characterizing a circadian system. Mutants which display
hereditary alterations of greater than 2.5 SD in these parameters are subjected to
more extensive, higher-resolution probing of the circadian clock. Variations in phase
or levels of nocturnal and diurnal activity are behavioral variables which can be
detected by monitoring robust wheel-running activity, and are relevant for the selec-
tion of candidate sleep mutants. Once potential mutants have been identified, more
specialized real-time automated sleep scoring can be accomplished with available
microcomputer systems.*

E. Initial Genetic Analysis of Selected Mutants

The next step in the characterization of selected candidates for mouse mutants with
altered rest:activity behavior is a series of genetic crosses to test the following: 1)
whether the mutant phenotype is transmitted to the next generation; 2) whether the
mutant phenotype is due to a single gene mutation; 3) the mode of inheritance and
phenotype of homozygotes; and 4) the influence of genetic background on the
mutant phenotype.

The heritability of the abnormal behavior is the critical step in the character-
ization of potential mutants and is tested by mating the potential mutant to a wild-
type mouse of the same genetic background to eliminate the influence of other
genetic elements that can mask the effect of the induced mutation. In addition, each
potential mutant is bred to a different inbred strain that displays similar behavioral
characteristics as the original mutagenized strain. This cross will provide F1 progeny
for a backcross, which will be necessary for genetic localization of the novel locus
associated with the behavioral anomaly. In both crosses, the ratio of mice with altered
behavior compared with the total number of progeny examined will indicate whether
the inheritance follows Mendelian ratios for single-gene inheritance of a dominant
trait (i.e., 50% mutant phenotype: 50% wild type based on a dominant gene). The
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precise ratio of mutant to normal progeny will depend on the penetrance of the
mutant phenotype and/or on the relative difference between the mean value for the
behavioral parameter in the particular inbred strain and that for the mutant progeny.

Although we screen progeny of mutagenized mice for a particular phenotype
— altered rest:activity cycles — it is important to keep in mind that an individual
sperm from a mutagenized male contains many mutational events, some of them
neutral, some causing other visible phenotypes, and some that cause lethality in
homozygotes. With each round of mating to a wild-type mouse (outbreeding),
recombination between the mutagenized and normal genome will take place, and
the desired mutant phenotype will be selected for, whereas other mutations will be
eliminated. In 5 to 6 generations the genome of the mouse line selected for altered
rthythms will be cleared of all but tightly linked mutations, and therefore suitable
for the interbreeding that will indicate the phenotype of homozygote animals. The
information concerning the phenotype in homozygotes may provide a useful insight
into the nature of the genetic component that alters rest:activity behavior and other
behavioral traits.

The test of the influence of genetic background on the mutant phenotype is a
useful one for several reasons. First, it will indicate which mouse inbred lines are
favorable for genetic mapping experiments that will be used for the chromosomal
localization of the mutant locus. In addition, different expressivity/penetrance of the
mutant phenotype in different genetic backgrounds can be used to identify and isolate
modifiers (suppressors and enhancers) of the analyzed phenotype.

lI. Discussion and Limitations of the Method

The aim of the mutagenesis screen illustrated in this chapter is to identify novel
mouse mutations and corresponding disrupted genes which may serve as entry points
for the construction of a molecular pathway(s) involved in governing sleep—wake-
fulness in mammals. The main assumption of our approach is that recordings and
analyses of wheel-running rest:activity patterns allow for “behavioral high-through-
put screening.” The analysis of these rest:activity patterns is two-pronged: the iden-
tification of altered circadian oscillator function as revealed by circadian wheel-
running parameters and the identification of altered activity parameters that may
point to potential sleep mutants. We argue that further behavioral analysis, including
electrophysiological recordings (by electroencephalogram and electromyogram)
before and after sleep deprivation, may reveal activity mutants that harbor inherited
alterations of sleep parameters.

The main limitation of a random mutagenesis screen for behavioral mutants in
the mouse is the laborious nature of the large-scale screen and the capacity of the
behavioral testing facility necessary to screen and analyze large numbers of
mutagenized lines. This aspect restricts current efforts to one-generation screens,
which will uncover only mutations with a dominant mode of inheritance. In general,
dominant inheritance is rarely associated with loss-of-function mutations which, as
stated before, are the most informative class of mutations in the genetic dissection
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of a molecular or neuronal pathway. Moreover, dominant mutations are not as frequent
as recessive mutations. Therefore, only a three-generation screen and breeding to
homozygosity of these randomly induced mutations will offer the opportunity to
systematically isolate essential regulatory genes in a particular process such as sleep.

Any knowledge of the mode of inheritance of the phenotype of interest in other
model organisms may give an important clue for the design of a mutagenesis
screen/scheme in the mouse. For example, the existence of an array of semidominant
alleles at the per locus in Drosophila (for a review see references 36 and 37) and
the fau mutation in the hamster’® provided a rationale for a dominat screen for
mutations that affect circadian behavior in the mouse.'''? In the case of sleep
anomalies, the study of narcolepsy in dogs, canarcl, serves as a useful example of
a recessive trait which could be potentially detected in heterozygotes (G1) by
pharmacological treatment; Mignot and colleagues showed that activation of cho-
linergic and deactivation of monoaminergic systems can induce narcoleptic/cata-
plectic behavior in normally asymptomatic carriers.’**° Neuropharmacological
testing of novel behavioral mutations recovered in a random mutagenesis screen will
be of great value in the initial characterization of these mutants and in the evaluation
of their resemblance to corresponding human inherited disorders. Hypothetically, if
a novel mouse mutant with sudden sleep attacks displays the same therapeutic
response as narcoleptic subjects, this mutant will be a likely candidate for a mouse
model of narcolepsy.

In a screen for a dominant mutation, the desired phenotype observed in het-
erozygotes (G1 progeny) may dramatically differ from the phenotype in mice with
two copies of this mutant locus (homozygotes). The true nature of the induced
mutation and the corresponding disrupted gene will only be ascertained following
its breeding to homozygosity — intermating of two affected individuals and analysis
of the mutant phenotype in their offspring. For example, we have recently shown
that the Wheels mutation, identified in our pilot mutagenesis screen for dominant
mutants with anomalies in circadian activity, is associated with embryonic lethality
and anomalies in the developing forebrain in homozygotes (Nolan, Alavizadeh, Lo,
and Bucan, unpublished). In the case of circadian rhythms, homozygosity at the per,
tim, tau, and Clock loci results in a more severe effect on circadian rhythmicity and
is not associated with lethality.!!36-3%41 However, in the case of other dominant
behavioral mutations in the mouse, it is important to await more studies to evaluate
how many of them will be associated with developmental defects or lethality in
homozygotes. This is particularly relevant in the case of gene(s) that may regulate
such an essential biological process as sleep. The association of developmental
anomalies with sleep disturbances and/or sleep apnea has been reported for several
human inherited disorders, such as Smith-Magenis*? and Treacher Collins® or Prader
Willi syndromes.**

Monitoring wheel running activity in rodents provides an efficient and inexpen-
sive screen for abnormal circadian behavior. In our effort to use the same paradigm
to screen for potential sleep mutants, we are characterizing mice with abnormal
values for activity phase (o) and mice with high levels of activity during the subjective
day, as well as those whose rest:activity phases seem fragmented. Although, by
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limiting ourselves to a noninvasive prescreen we may miss subtleties in sleep—wake
architecture, it is important to keep in mind that our long-term goal will be to
positionally clone genes disrupted in the sleep mutations. Positional cloning involves
extensive breeding and phenotypic analysis of several hundreds of mice. Therefore,
at this stage of sleep genetics, sleep mutants that are “marked” by an additional
phenotype and scoreable in the high throughput assay are an important advantage.
The ultimate goal of a screen for mutations with abnormal rest:activity behavior
is the identification of a disrupted gene. How does one discover the molecular identity
of a gene whose function is not known? The strategy that allows cloning of a gene
based on its chromosomal map location is positional cloning.** Currently, procedures
for positional cloning include genetic mapping of the locus of interest to a 0.5 cM
interval (approximately 1 Mb), physical mapping, cloning of large genomic DNA
fragments, and finally a search for genes of interest in the cloned region. On average,
it takes two to three years to positionally clone the gene disrupted in a novel mutation
in the mouse. With comprehensive physical and transcription maps, valuable resources
currently being developed by the Human Genome Project, conventional positional
cloning may soon be replaced by techniques that allow one to search for point
mutations in candidate genes in the immediate vicinity of the mutant locus rather
than search for these candidate genes in a larger chromosomal segment.“S In other
words, the availability of transcription maps and expression profiles for genes placed
on these maps will allow faster identification of genes, disrupted in novel behavioral
mutants in the mouse, as well as identification of their homologs in humans.

Acknowledgments

We thank Alicia Dixon for animal care, Doua Xiong and Michael Urashka for
behavioral testing, Gary Pickard and Ralph Mistlberger for help and advice with the
set up of the behavioral testing unit, and Dani Reed, Amita Sehgal, Larry Sanford,
Sigrid Veasey, and Scott Poethig for discussions and their comments on the manu-
script. These studies were supported by grants Air Force Office for Scientific
Research (F49620-94-1-0234) and NIH Grant HD 28410 (to M.B.).

References

1. Capecchi, M.R., Altering the genome by homologous recombination, Science, 244,
1288, 1989.

2. Joyner, A.L., Gene Targeting: A practical Approach, Oxford University Press, New
York, 1993.

3. Friedmann, J. K., A diallel analysis of the genetic underpinnings of mouse sleep,
Physiol. Behav., 12, 169, 1974.

4. Valatx, J. L., Bugat, R., and Jouvet, M., Genetic studies of sleep in mice, Nature, 238,
226, 1972.



154

6.

9.

13.

14.

15.

16.

I

18.

19.

20.

Molecular Regulation of Arousal States

Mitler, M. M., Cohen, H. B., Grattan, J., Dominic, J., Deguchi, T., Barchas, J. D,
Dement, W. C., and Kessler, S., Sleep and serotonin in two strains of Mus musculus,
Pharmacol. Biochem. Behav., 1, 501, 1973.

Oliverio, A. and Malorni, W., Wheel running and sleep in two strains of mice: plasticity
and rigidity in the expression of circadian rhythmicity, Brain Res., 163, 121, 1979.
Tobler, I., Deboer, T., and Fischer, M., Sleep and sleep regulation in normal and prion
protein-deficient mice, J. Neurosci. 17, 1869, 1997.

Russell, W.L., Kelly, E.M., Hunsicker, P.R., Bangham, J.W., Maddux, S.C., and Phipps,
E.L., Specific-locus test shows ethylnitrosurea to be the most potent mutagen in the
mouse, Proc. Natl. Acad. Sci. USA, 76, 5818, 1979.

Rinchik, E.M., Chemical mutagenesis and fine-structure functional analysis of the
mouse genome, Trends Genet., 7, 15, 1991.

. Takahashi, J.S., Pinto, L.H., and Vitaterna, M.H., Forward and reverse genetic

approaches to behavior in the mouse, Science, 264, 1724, 1994.

. Vitaterna, M.H., King, D.P., Chang, A-M., Kornhauser, J.M., Lowrey, P.L.., McDonald,

J1.D., Dove, W.E, Pinto, L.H., Turek, EW., Takahashi, J.S., Mutagenesis and Mapping
of a Mouse Gene, Clock, Essential for Circadian Behavior, Science, 264, 719, 1994.
Pickard, G. E., Sollars P. J., Rinchik, E. M., Nolan, P. M., and Bucan, M., Mutagenesis
and behavioral screening for altered circadian activity identifies the mouse mutant,
Wheels (Whl), Brain Research, 705, 255, 1995.

Richardson, G. S., Moore-Ede, M. C., Czeisler, C. A., and Dement, W. C., Circadian
rhythms of sleep and wakefulness in mice: analysis using long-term automated record-
ing of sleep, Am. J. Physiol. 248, R320, 1985.

Mitler, M. M., Lund, R., Sokolove, P. G., and Pittendrigh, C. S., Sleep and activity
rhythms in mice: a description of circadian patterns and unexpected disruptions in
sleep. Brain Res., 131, 129, 1977.

Mistlberger. R. A., Bergman, B. M., and Rechtschaffen, A., Period-amplitude analysis
of rat electroencephalogram: effects of sleep deprivation and exercise, Sleep, 10, 508,
1987.

Edgar, D. M., Martin, C. E., and Dement, W. C., Activity feedback to the mammalian
circadian pacemaker: influence on observed measures of rthythm period length, J. Biol.
Rhythms, 6, 185, 1991.

Welsh, D. K., Richardson, G. S., and Dement, W. C., Effect of running wheel avail-
ability on circadian patterns of sleep and wakefulness in mice, Physiol. Behav., 43,
771, 1988.

Niisslein-Volhard, C. and Wieschaus, E., Mutations affecting segment number and
polarity in Drosophila., Nature, 287, 795, 1980.

Hirsh, D. and Vanderslice, R., Temperature-sensitive developmental mutants of cae-
norhabditis elegans, Dev. Biol., 49, 220, 1976.

Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D.
A., Odenthal, J., van Eeden, F. J. M., Jiang, Y.-J., Heisenberg, C.-P., Kelsh, R. N.,
Furutani-Seiki, M., Vogelsang, E., Beuchle, D., Schach, U., Fabian, C., and Nusslein-
Volhard, C., The identification of genes with unique and essential functions in the
development of the zebrafish, Danio rerio, Development, 123, 1, 1996.



Chemical Mutagenesis and Screening for Mouse Mutations 165

21.

22.

23

24.

25

26.

27.

28.

29.

30.

31

32.

33.

34,
. inbred mouse strains, J. Neurosci., 10, 3685, 1990.
35.

36.
37.
38.

Driever, W., Solnica-Krezel, L., Schier, A. F.,, Neuhauss, S. C. F, Malicki, J., Stemple,
D. L., Stainier, D. Y. R., Zwartkruis, F., Abdelilah, S., Rangini, Z., Belak, J., and Boggs,
C., A genetic screen for mutations affecting embryogenesis in zebrafish, Development,
123, 37, 1996.

Bode, V.C., Ethylnitrosourea mutagenesis and the isolation of mutant alleles for specific
genes located in the T region of mouse chromosome 17, Genetics, 108, 457, 1984.
Shedlovsky, A., Guenet, J-L., Johnson, L.L., and Dove, W.E, Induction of recessive
lethal mutations in the T/r-H-2 region of the mouse genome by a point mutagen, Genet.
Res., 47, 135, 1986.

Rinchik, E.M., Carpenter, D.A., and Selby, P.B., A strategy for fine-structure functional
analysis of a 6- to 11-centimorgan region of mouse chromosome 7 by high-efficiency
mutagenesis, Proc. Natl. Acad. Sci. USA, 87, 896, 1990.

Cordes, S.P. and Barsh, G.S., The Mouse segmentation gene kr encodes a novel basic
domain-leucine zipper transcription factor, Cell, 79, 1025, 1994.

Nolan, P. M., Sollars, P. J., Bohne, B. A., Ewens, W. I., Pickard, G. E., and Bucan,
M., Heterozygosity mapping of partially congenic lines: mapping of a semidominant
neurological-mutation, Wheels (Whl), on mouse chromosome 4, Genetics, 140, 245,
1995.

Hitotsumachi, S., Carpenter, D.A., and Russell, W.L., Dose repetition increases the
mutagenic effectiveness of N-ethyl-N-nitrosurea in mouse spermatogonia, Proc. Natl.
Acad. Sci. USA, 82, 6619, 1985.

Nolan PM., Kapfhamer D., and Bucan, M., Procedures for the identification of dom-
inant behavioral mutations in mice using ENU mutagenesis, Methods: A Companion
to Methods in Enzymology. Functional Genomics in the Mouse, submitted.
Moore-Ede, M.C., Sulzman, FM., and Fuller, C.A., The Clock That Times Us, Harvard
University Press, Cambridge, 1982, Chaps. 1 and 2.

Chatfield, C., The Analysis of Time Series: An Introduction, New York, Chapman and
Hall, 1984.

Bingham, C., Arbogast, B., Guillaume, G.C., Lee, J.K., and Halberg, F., Inferential
statistical methods for estimating and comparing cosinor parameters, Chronobiologia,
9, 397, 1982.

Dorrscheift, G.J. and Beck, J., Advanced methods for evaluating chracteristic param-
eters (tau, alpha, ro) of circadian rhythms, J. Math. Biol., 2, 107, 1975.

Pittendrigh, C.S. and Daan, S., A functional analysis of circadian pacemakers in
nocturnal rodents. 1. The stability and lability of spontaneous frequency, J. Comp.
Physiol., 106, 223, 1976.

Schwartz, W.J. and Zimmerman, P., Circadian timekeeping in BALB/c and C57BL/6

Van Gelder, R.N., Edgar, D.M., and Dement, W.C., Real-time automated sleep scoring,
validation of a microcomputer-based system for mice, Sleep, 14, 48, 1991.

Dunlap, J.C., Genetic analysis of circadian rhythms, Ann. Rev. Physiol., 55, 683, 1993.
Hall, J.C., Genetics of circadian rhythms, Ann. Rev. Genet., 24, 659, 1993.

Ralph, M.R. and Menaker, M., A mutation of the circadian system in golden hamsters,
Science, 241, 1225, 1988.



156

39.

40.

41.

42.

43.

45.

46.

Molecular Regulation of Arousal States

Lucas, E.A., Foutz, A.S., Dement W.C., and Mitler, M.M., Sleep cycle organization in
narcoleptic and normal dogs, Physiol. Behav., 23, 737, 1979.

Mignot E., Nishino, S., Sharp, L.H., Arrigoni, J., Siegal, .M., Reid, M.S., Edgar, D.M.,
Ciaranello, R.D., and Dement, W.C., Heterozygosity at the canarc-1 locus can confer
susceptibility for narcolepsy: Induction of cataplexy in heterozygous asymptomatic
dogs after administration of a combination of drugs acting on monoaminergic and
cholineric systems, J. Neurosci., 13, 1057, 1993.

Sehgal, A., Price, J., and Young, M.W., Circadian behavioral rhythms and molecular
oscillations of per RNA abolished by a new Drosophila mutation, timeless, Science,
263, 1603, 1994.

Greenberg, F., Lewis, R.A., Potocki, L., Glaze, D., Parke, J., Killian, J., Murphy, M.A.,
Williamson, D., Brown, F., Dutton, R., McCluggage, C., Friedman, E., Sulek, M., and
Lupski, J.R., Multi-Disciplinary clinical study of Smith-Magenis Syndrome (Deletion
17p11.2), Am. J. Med. Genet., 62, 247, 1996.

Colmenero, C., Esteban, R., Albarino, A.R., and Colmenero, B., Sleep Apnoea Syn-
drome associated with maxillofacial abnormalities, J. Laryngol. Otol., 105, 94, 1991.
Clarke, D.J., Waters, J., and Corbett, J.A., Adults with Prader-Willi Syndrome: abnor-
malities of sleep and behaviour, J. Roy. Soc. Med., 82, 21, 1989.

Collins, E.S., Positional cloning: Let’s not call it reverse anymore, Nature Genetics, 1,
3, 1992.

Schuler, G.D., Boguski, M.S., Stewart, E.A., Stein, L.D., Gyapay, G., Rice, K., White,
R.E., Rodriguez-Tome, P., Aggarwal, A., Bajorek, E., Bentolila, S., Birren, B.B., Butler,
A., Castle, A.B., Chiannilkulchai, N., Chu, A., Clee, C., Cowles, S., Day, P.J., Dibling,
T., Drouot, N., Dunham, I., Duprat, S., East, C., Edwards, C., Fan, J.-B., Fang, N.,
Fizames, C., Garrett, C., Green, L., Hadley, L., Harris, M., Harrison, P., Brady, S.,
Hicks. A., Holloway, E., Hui, L., Hussain, S., Louis-Dit-Sully, C., Ma, J., MacGilvery,
A., Mader, C., Maratukulam, A., Matise, T.C., McKusick, K.B., Morissette, J., Mungall,
A., Muselet, D., Nusbaum, H.C., Page, D.C., Peck, A., Perkins, S., Piercy, M., Qin,
F., Quackenbush, J., Ranby, S., Reif, T., Rozen, S., Sanders, C., She, X., Silva, J.,
Slonim, D.K., Soderlund, C., Sun, W.-L., Tabar, P., Thangarajah, T., Vega-Czarny, N.,
Vollrath, D., Voyticky, S., Wilmer, T., Wu, X., Adams, M.D., Auffray, C., Walter,
N.AR., Brandon, R., Dehejia, A., Goodfellow, P.N., Houlgatte, R., Hudson, Jr., J. R.,
Ide, S.E., Iorio, K.R., Lee, W.Y., Seki, N., Nagase, T., Ishikawa, K., Nomura, N.,
Phillips, C., Polymeropoulos, M.H., Sandusky, M., Schmitt, K., Berry, R., Swanson,
K., Torres, R., Venter, J.C., Sikela, J.M., Beckmann, J.S., Weissenbach, J., Myers, R M.,
Cox, D.R., James, M.R., Bentley, D., Deloukas, P., Lander, E.S., and Hudson, T.J., A
gene map of the human genome, Science, 274, 540, 1996.



