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Brief Communication

Systemic 5-bromo-2-deoxyuridine induces conditioned
flavor aversion and c-Fos in the visceral neuraxis

Adam Kimbrough,1 Bumsup Kwon,1 Lisa A. Eckel,2 and Thomas A. Houpt1,3

1Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, Florida 32306, USA; 2Department

of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, 32306, USA

5-bromo-2-deoxyuridine (BrdU) is often used in studies of adult neurogenesis and olfactory learning, but it can also have

toxic effects on highly proliferative tissue. We found that pairing Kool-Aid flavors with acute systemic injections of BrdU

induced strong conditioned flavor aversions. Intermittent injections during Kool-Aid-glucose conditioning interfered with

learning of a conditioned flavor-nutrient preference. Acute injection of BrdU also elevated plasma corticosterone levels and

induced c-Fos in the visceral neuraxis. Thus, acute or intermittent systemic injections of BrdU (50–200 mg/kg) have aver-

sive effects that may interfere with learning.

5-bromo-2-deoxyuridine (BrdU), a thymidine analog, incorpo-
rates into daughter DNA during the S-phase of cell division, mark-
ing new cells. BrdU is commonly used to label proliferation of new
neurons in the mammalian brain during adult neurogenesis that
may contribute to learning. Enhanced hippocampal neurogene-
sis, as labeled by BrdU, improves long-term spatial and visual
recognition memory (Thuret et al. 2009). Additionally, olfactory
learning impacts survival of newborn neurons (labeled with
BrdU) after integration in the adult olfactory bulb (Mouret et al.
2008).

BrdU is often used in adult neurogenesis associative learn-
ing paradigms such as olfactory discrimination (as measured
by habituation/disinhibition or by olfactory-cued reward task)
(Mandairon et al. 2006; Mouret et al. 2008, 2009), olfactory asso-
ciative learning (associating an odor with a hidden food reward)
(Sultan et al. 2010), pair bonding in voles (Smith et al. 2001),
and in nonassociative learning or declarative paradigms such as
olfactory habituation (Magavi et al. 2005), olfactory enrichment
(Rochefort and Lledo 2005; Veyrac et al. 2009), and hippocampal-
dependent spatial learning and object recognition (Thuret et al.
2009; Creer et al. 2010).

A potential confound for studies of adult neurogenesis in
learning and memory is the toxicity of BrdU. Systemic injections
of BrdU could have aversive consequences that might alter
or influence learning. Because BrdU is incorporated into rap-
idly dividing cells, it can be toxic to highly proliferative tissues.
BrdU has well-known teratogenic effects (Franz and Kleinebrecht
1982; Kolb et al. 1999). It also has been used for cancer treatment
based on toxicity to and radiosensitization of mitotically active
tumor cells (Lawrence et al. 1992).

BrdU is toxic to normal tissues with high proliferation rates,
such as the skin and gastrointestinal tract. For example, in clinical
trials of systemic BrdU in humans, BrdU caused rashes, mucositis,
nail loss, and exfoliative dermatitis (Levin et al. 1995). BrdU is
incorporated heavily in the intestine as early as 1 h following
i.p. injection (Kriss and Revesz 1962), suggesting possible effects
on endothelial proliferation within the lining of the gut. High
doses of chronic BrdU (e.g., 200 mg/kg/day for 10 d) led to weight
loss in mice (Lawrence et al. 1992).

BrdU is toxic to proliferating neurons at high doses in vitro
(Caldwell et al. 2005). However, doses of 100–600 mg/kg i.p.
have been found to be nontoxic to proliferating neurons in
the hippocampus of adult rats (Cameron and McKay 2001).
Nonetheless, BrdU might have aversive effects secondary to toxic
effects on proliferative tissues in the periphery, such as in the gas-
trointestinal tract.

To determine whether BrdU has toxic effects that would
impact behavior and neural processing, we assessed conditioned
flavor aversion (CFA), interference with conditioned nutrient-
flavor preference (CFNP) learning, corticosterone release, and
c-Fos following systemic injections of BrdU. We used doses of
BrdU that are standard for visualization of proliferating neurons
(i.e., 50–200 mg/kg).

CFA is a form of associative learning in which an animal asso-
ciates a novel flavor or taste with an aversive consequence, and
subsequently avoids ingesting the flavor. CFA is a sensitive assay,
such that a CFA can be observed in the absence of any other
apparent toxic effect (Gamzu et al. 1985). The formation of a
robust CFA often requires only one conditioning trial (Garcia
and Kimeldorf 1957). Drugs and treatments with antimitotic
activity can serve as potent aversive stimuli. Radiation (Garcia
et al. 1955), cisplatin (Rudd et al. 1998), and cyclophosphamide
(Mungarndee et al. 2006) all cause nausea and malaise in humans
and are effective as a US in CFA paradigms.

To examine whether systemic BrdU could lead to a formation
of a CFA, we paired ingestion of Kool-Aid/saccharin with a single
i.p. injection of BrdU. Adult male rats (n ¼ 24) were placed on a
water restriction schedule. On conditioning day, rats were allowed
a 10-min access to 0.05% Kool-Aid mixed with 0.05% saccharin
(counterbalanced, cherry and grape; CS+). Rats drank an average
of 5.2+0.3 g, with no difference in intake among groups. Five
min after access to the CS+ rats were divided into four groups
and injected with one of four solutions: vehicle (0.007 N NaOH,
0.15 M NaCl, 20 mL/kg), a low dose of BrdU (50 mg/kg), a high
dose of BrdU (200 mg/kg), or LiCl (0.15 M, 76 mg/kg) as a positive
control. Following injections, water was returned overnight. The
next day, two-bottle preference testing was begun with CS+ and
an unconditioned Kool-Aid/saccharin (CS2) solution and con-
tinued for 14 d after conditioning. Preference score was calculated
as CS+ intake over total intake of CS+ and CS2. Vehicle-injected
rats were predicted to show a 50% preference for the CS+ flavor
over the CS- flavor; lower CS+ preference would indicate acquisi-
tion of a CFA.
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During two-bottle preference testing, the vehicle and low
dose BrdU groups showed a preference close to 50%, indicating
equal intakes of CS+ and CS-flavors. The LiCl and high-dose
BrdU groups drank almost none of the CS+ flavor, indicating
low preference and a strong CFA (Fig. 1). Two-way ANOVA
revealed a significant effect of groups (F(3,20) ¼ 20.35, P ,

0.00001), but no effect of days and no interaction. Post-hoc
Newman Keuls revealed no significant difference between the
low-dose BrdU and vehicle groups. Both the high-dose and LiCl
groups displayed significantly lower CS+ preferences than the
vehicle group, and there was no significant difference in CS+ pref-
erence between the high dose BrdU and LiCl groups. Thus, the
high dose BrdU and LiCl groups formed equivalent CFAs.

Although a single injection of 50 mg/kg BrdU failed to
induce a CFA, multiple pairings of a CS and US can lead to a stron-
ger CFA (Riley and Mastropaolo 1989). Therefore, we examined
whether low-dose BrdU could induce a CFA after multiple pairings
by giving three consecutive days of conditioning pairing Kool-Aid
with 50 mg/kg injections of BrdU.

Rats (n ¼ 12) were placed on water restriction and then con-
ditioned on three consecutive days. On each conditioning day rats
were allowed a 10-min access to 0.05% Kool-Aid mixed with
0.05% saccharin (CS +, counterbalanced cherry and grape). Rats
were injected with either vehicle or BrdU (50 mg/kg) 5-min fol-
lowing CS+ access. The day after the third conditioning day,
expression of CFA was examined for the 6-d via two-bottle prefer-
ence testing with the CS+ and CS-solutions.

Two-way ANOVA on conditioning intakes across the 3 d of
conditioning showed that there was an effect of days (F(2,20) ¼

28.12, P , 0.00001), but not group and no interaction. Intake of
the BrdU group was significantly lower than the vehicle group
on day 2 of conditioning, but not on days 1 or 3 (data not shown).

During two-bottle preference testing, neither the BrdU nor
vehicle groups showed an overall average preference lower than
50%. There was a main effect of group (F(1,10) ¼ 9.81, P , 0.05),
but no effect of days and no interaction. Therefore, intakes across
the 6 d of preference testing were pooled for group comparison
alone. The average CS+ preference of the BrdU group was signifi-
cantly lower than the CS+ preference of the vehicle group (51+

3% vs. 69+5%; P , 0.01).
Although BrdU induced a CFA when explicitly paired with a

novel flavor, BrdU is often administered across several days during

a distinct learning protocol to assess learning-associated neu-
rogenesis. A typical neurogenesis study using BrdU injections
often involves multiple injections over the course of a 24- to 48-h
period. Multiple injections allow labeling of cells that are going
through S-phase divisions across the day, and thus incorporating
BrdU at different times (Cameron and McKay 2001). These studies
often result in a total dose of BrdU ranging from 100 mg/kg to
300 mg/kg per day. If BrdU has aversive effects, then a typical neu-
rogenesis protocol of BrdU administration might interfere with
the learning under study.

To determine whether BrdU can disrupt learning, we admin-
istered BrdU concurrently with CFNP acquisition. CFNP learning
is a robust form of olfactory learning in which a flavor is paired
with nutrient content (e.g., glucose), producing a strong prefer-
ence for the nutrient-paired flavor over non-nutritive flavors
(Ackroff and Sclafani 1991; Sclafani et al. 1993; Ackroff et al.
2009). Disruption of CFNP learning by BrdU injections would
indicate an alteration of learning following BrdU injection.

Rats (n ¼ 16) were assigned to two groups of eight. One group
received vehicle injections, while the other group received BrdU
injections (100 mg/kg). Injections were given at 2 h after lights
off and repeated every 12 h for a total of four injections over
48 h. Thus, rats received intermittent injections of BrdU at a
dose that is not neurotoxic (Cameron and McKay 2001).

Immediately following the first injection, rats were given
48-h access to two bottles: a solution of 8% glucose, 0.05% sodium
saccharin, and 0.05% Kool-Aid (CS +, grape or cherry counterbal-
anced); and water. Intake was measured every 12 h. At 24 h, solu-
tions were refilled and bottle positions were switched. Following
48 h of conditioning, two-bottle preference testing with both
CS +/saccharin (without glucose) and unconditioned Kool-Aid/
saccharin (CS2) solutions was begun and continued for 14 con-
secutive days.

During 48-h conditioning the cumulative intake of CS+ by
vehicle-treated rats increased over the course of 48 h; water intake
remained low. The BrdU-treated rats had slightly increased intake
of water over 48 h, while the CS+ intake remained low (Fig. 2A).
There were significant effects of group and hour during condition-
ing and an interaction (F(3,42) ¼ 73.56, P , 0.0001), such that the
CS+ intake of the BrdU group was significantly lower than the
vehicle group at all time points.

During two-bottle preference testing there was an effect of
group (F(1,14) ¼ 18.86, P , 0.001) with a significant difference
between BrdU and vehicle-treated rats on all days (Fig. 2B).
Thus, concurrent administration of BrdU during CNFP condi-
tioning prevented a CNFP from forming and instead led to CFA
acquisition.

We also determined whether BrdU had acute behavioral or
physiological effects. After injection of a malaise-inducing toxin,
rats display “lying-on-belly” (LOB) by maintaining an extended
prone posture on the cage floor (Bernstein et al. 1992). Six rats
were observed for LOB for 1 h following i.p. injection of vehicle,
BrdU (200 mg/kg), or LiCl (76 mg/kg). Every rat received each
treatment counterbalanced across days, with at least 3 d between
injections. LiCl injections caused LOB in all rats (6/6) with an
average latency of 18+2 min, while LOB after BrdU was observed
at 46 min post-injection in one rat (1/6). LOB was not observed
after vehicle injections.

Although we did not observe an acute behavioral effect, we
examined corticosterone levels at 1 h after BrdU injection. LiCl
injection elevates plasma corticosterone in rats (Hennessy et al.
1976; Smotherman et al. 1976; Spencer et al. 2005) as does cyclo-
phosphamide (Di Renzo et al. 1977). Rats (n ¼ 12/group) received
an i.p. injection of vehicle or BrdU (200 mg/kg). One hour later
rats were anesthetized with CO2, decapitated, and trunk blood
was collected. Plasma was processed for rat corticosterone by
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Figure 1. Preference for a Kool-Aid flavor (CS+) paired with drug treat-
ment over an unpaired Kool-Aid flavor (CS2) across 14 d of two-bottle
tests. After one pairing of the CS+ with either 200 mg/kg BrdU (black
squares) or LiCl (white squares), rats showed a significantly lower prefer-
ence compared with vehicle-treated rats (white circles). CS+ preference
in rats treated with 50 mg/kg BrdU (black circles) was not significantly
lower than in vehicle-treated rats.
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radioimmunoassay (Coat-A-Count, Siemens). BrdU caused a signif-
icant increase (P , 0.05) in plasma corticosterone levels (114.6+

27.8 ng/mL) compared with vehicle (41.2+10.9 ng/mL).
Finally, we explored whether BrdU would induce c-Fos

expression patterns in the visceral neuraxis comparable to other
toxins. We examined c-Fos in the visceral neuraxis at 1 and 3 h
after BrdU injection in the nucleus of the solitary tract (NTS),
the parabrachial nucleus (PBN), and the central amgydala (CeA).

Rats were injected with vehicle (n ¼ 4/time point) or with
BrdU (n ¼ 4/time point, 200 mg/kg). At 1 and 3 h after injection,
rat brains were removed and processed for c-Fos immunoreactivity
as previously described (Kwon et al. 2008).

At1 hafter injectiontherewas significantlymorec-Fosexpres-
sion in BrdU- vs. vehicle-treated rats in the NTS (7.4+1.8 vs. 2.8+

0.9, P , 0.05) but not the PBN or CeA. At 3 h after injection there
was significantly greater c-Fos expression in BrdU- vs. vehicle-
treated rats in the NTS (15.3+5.8 vs. 3.1+0.6; P , 0.05) and CeA
(26.2+8.3 vs. 5.7+1.3; P , 0.05), but not in the PBN (11.8+4.3
vs. 4.0+1.0; P , 0.07) (Fig. 3). Much of the c-Fos in the NTS region
was located near the border of the NTS and area postrema (AP),
although very little c-Fos was seen in the AP itself. In the PBN,
c-Fos was localized to the lateral and external subnuclei.

BrdU activation of the visceral neuraxis is consistent with an
effect on the gastrointestinal tract and visceral afferents (e.g., the
vagus nerve) or chemoreceptors of the area postrema (Bernstein
et al. 1992; Saper 2002). For example, c-Fos response in the brain

following LiCl injection occurs heavily in the NTS, PBN and CeA
(Yamamoto et al. 1992; Swank and Bernstein 1994; Spencer and
Houpt 2001; Rinaman and Dzmura 2007). Cisplatin induces
similar c-Fos expression in the NTS and AP, which relies on va-
gal input (Horn et al. 2004, 2007; Horn 2009). Thus, expression
of c-Fos in the visceral neuraxis is an indicator of visceral
stimulation.

In conclusion, these results demonstrate that systemic BrdU
has aversive effects on rats even in the absence of observable
behavioral effects. Systemic injections of a high dose of BrdU
(200 mg/kg, i.p.) paired with a flavor induced a profound CFA,
while a lower dose (50 mg/kg) had a milder aversive effect after
multiple pairings. Furthermore, BrdU administration (as in a typ-
ical adult neurogenesis paradigm) during acquisition of an olfac-
tory-based CFNP was disruptive to the learning. Additionally,
we showed that injections of BrdU stimulated corticosterone
release and increased c-Fos expression in the NTS and CeA,
suggesting that BrdU treatment activates the hypothalamic-pitui-
tary-adrenal axis and visceral neuraxis in parallel with its aversive
effects.

We have not identified the mechanism of BrdU’s aversive
action. BrdU is incorporated into mitotically active cells, and
can therefore have a cytotoxic effect on rapidly dividing tissues
(Caldwell et al. 2005). Thus, BrdU could have an effect similar
to other treatments that damage proliferating cells (e.g., whole-
body irradiation (Garcia et al. 1955), cisplatin (Rudd et al. 1998),
or cyclophosphamide (Mungarndee et al. 2006). The gastrointes-
tinal tract, with rapid turnover of cells, shows a high rate of BrdU
incorporation (Kriss and Revesz 1962), and thus is a potential site
of BrdU action that could lead to aversive effects and CFA
acquisition.

The doses of BrdU typically used in studies of adult neuro-
genesis are above the threshold required for aversive effects
(Cameron and McKay 2001). Thus, there is the potential for
aversive effects of BrdU to interact with or confound learning.
Others have also shown that BrdU may interfere with learning
(Komissarova et al. 2010). Olfactory learning may be especially
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Figure 2. (A) Cumulative intake of Kool-Aid flavor mixed with glucose
(CS+, black symbols) or water (white symbols) by rats injected with
vehicle (circles) or BrdU (100 mg/kg, squares) at 12-h intervals across a
48-h conditioning period. Vehicle-treated rats showed robust intake of
the CS+ with almost no water consumption; BrdU-treated rats showed
a preference for water over the CS+. (B) Preference for the CS+ flavor
mixed with saccharin over an unpaired flavor (CS2) across 14 d of two-
bottle preference tests. Vehicle-treated rats (white circles) showed a
strong preference for the CS+, while BrdU-treated rats (black circles)
showed an aversion toward the CS+.
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Figure 3. Photomicrographs of c-Fos expression 3 h after injection of
vehicle (A,C,E) or BrdU (200 mg/kg; B,D,F) in the NTS (A,B), PBN (C,D),
and CeA (E,F). Scale bar in A: 100 microns. (IV) Fourth ventricle; (cc)
central canal; (st) solitary tract; (AP) area postrema; (NTS) nucleus of
the solitary tract; (bc) brachium conjectivum; (lPBN) lateral parabrachial
nucleus; (cst) commisural stria terminalis; (CeA) central nucleus of the
amygdala.
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susceptible to aversive interference, given the ease in which odor
or flavor aversions can be acquired. Stimuli producing visceral
toxic effects can be strongly associated with flavor, taste, and
ingestion; other extereoceptive stimuli may not be as strongly
associated with the aversive effects of BrdU injections (Garcia
and Ervin 1968).

BrdU injections may disrupt other types of learning due to
elevated corticosterone levels, such as disruption of hippocampal-
dependant spatial memory by acute stress (Cazakoff et al. 2010).
Furthermore, BrdU would most likely interfere with learning
when administered during the acquisition period. There is no rea-
son to believe prior administration of BrdU (i.e., to label mature
neurons that proliferated days or weeks earlier) would interfere
with subsequent learning.
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