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Abstract

This study was conducted to determine if nitric oxide (NO) is involved in lithium-induced expression of c-Fos and inducible cAMP early

repressor (ICER) in the adrenal gland. Rats received an intraperitoneal injection of isotonic lithium (76 mg/kg) with either an

intracerebroventricle (i.c.v., 250 Ag) or intraperitoneal (i.p., 30 mg/kg) NN-nitro-L-arginine methyl ester (L-NAME) pretreatment. The adrenal

expression of c-Fos and ICER was examined by in situ hybridization 1 h after the lithium injection. The cortical c-Fos/ICER expression

induced by lithium was not modulated by L-NAME pretreatment. However, lithium-induced medullary expression of c-Fos was attenuated by

central L-NAME, and ICER by systemic L-NAME. These results suggest that nitric oxide is, at least partly, involved in lithium-induced c-

Fos/ICER expression in the adrenal medulla, and that central nitric oxide may play a different role from peripheral nitric oxide in lithium-

induced activation of adrenal medulla.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Although lithium has been used clinically for over 30

years and numbers of studies related to its therapeutic

effects have been done (Pilcher, 2003; see for review), the

cellular and molecular bases of the therapeutic, especially

toxic effect of lithium still remain unclear. Lithium is

conventional stimulus widely used to produce conditioned

taste aversion for its toxic effect. Intraperitoneal adminis-

tration of lithium chloride at doses sufficient to induce

conditioned taste aversion activates the hypothalamic–pitu-

itary–adrenal axis (Hennessy et al., 1976; Sugawara et al.,

1988). Blockade of the hypothalamic–pituitary–adrenal

activation with adrenalectomy impairs the acquisition of

lithium-induced conditioned taste aversion in mice (Peeters

and Broekkamp, 1994). Dysfunction of the hypothalamic–

pituitary–adrenal system is one of the major pathophysio-

logical alterations observed in patients suffering from mood

disorders, and the hypothalamic–pituitary–adrenal activity
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returns to normal following successful pharmacotherapy

with lithium or other antidepressants (Holsboer and Barden,

1996; see for review). These previous studies suggest that

both the therapeutic and toxic effects of lithium may, at least

partly, correlate with its regulatory role in the hypothalam-

ic–pituitary–adrenal activation. However, little is known

about the mechanism by which lithium activates the hypo-

thalamic–pituitary–adrenal system.

Nitric oxide (NO), a diffusible neurotransmitter, modu-

lates lithium-induced conditioned taste aversion learning

(Wegener et al., 2001) and stress-induced activation of the

hypothalamic neurons (Rivier, 1994; Amir et al., 1997;

Turnbull et al., 1998; Kim and Rivier, 2000). Central

administration of NO donors activates vasopressin and

corticotrophin-releasing hormone neurons in the hypotha-

lamic paraventricular nucleus (Lee et al., 1999), stimulates

adrenocorticotrophic hormone release (Seo and Rivier,

2001). Lithium treatment was reported to increase gene

expression and enzyme activity of neuronal nitric oxide

synthase (nNOS) in the rat hypothalamus (Anai et al.,

2001). These reports support the idea that NO may be

involved in the lithium-induced hypothalamic–pituitary–

adrenal activation.
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Previous report demonstrated that expression of induc-

ible cAMP early repressor (ICER) is induced in the adrenal

gland in response to stress (Della Fazia et al., 1998), and we

found that intraperitoneal lithium chloride at a dose suffi-

cient to produce conditioned taste aversion induces the

adrenal expression of ICER, as a part of the hypothalam-

ic–pituitary–adrenal activation (Spencer et al., 2000; man-

uscript in revision). ICER expression induced by lithium

appears to correlate with c-Fos expression (Foulkes et al.,

1991; Mao et al., 1998; Spencer and Houpt, 2001). In order

to further determine the mechanism of lithium-induced

activation of hypothalamic–pituitary–adrenal axis, we ex-

amined c-Fos and ICER expression in the rat adrenal gland

after an intraperitoneal lithium chloride with pretreatment of

an intraperitoneal or an intracerebroventricular NN-nitro-L-

arginine methyl ester (L-NAME), a nitric oxide synthase

(NOS) inhibitor.
Fig. 1. Autoradiographies of c-Fos or ICER in situ hybridization on the

adrenal glands. Rats were sacrificed 1 h after an intraperitoneal lithium

chloride (0.15 M, 76 mg/kg) (B, D) or saline (A, C). Lithium markedly

increased ICER (B) and c-Fos (D) expression both in the cortex and the

medulla, compared to each saline control, respectively (A, C).
2. Materials and methods

2.1. Animals

The experimental protocol was approved by the Institu-

tional Animal Care and Use Committee of Florida State

University. Adult male Sprague–Dawley rats (Charles Riv-

er) weighing 300–400 g were individually housed in

polycarbonate cages with wood-chip bedding with ad libi-

tum access to tap water and standard rodent chow under 12

h/12 h light–dark cycle.

2.2. Intracerebroventricular cannulation

Intracerebroventricular cannulation was performed as

previously described (Jahng et al., 2003). Rats with cannu-

las projecting into the lateral ventricle started drinking water

within 2 min in angiotensin test, while rats that failed to

drink were dropped from the study. Cannula placements

were also verified postmortem by sectioning through the

brain.

2.3. Drugs

NN-nitro-L-arginine methyl ester (L-NAME; Sigma,

MO, USA) was dissolved in 0.9% physiological saline.

For intracerebroventricular (i.c.v.) injection, rats (n = 7 per

group) were injected with either L-NAME (250 Ag) or iso-
osmotic NaCl (180 Ag) in a volume of 5 Al each,

delivered over 30 s with a handheld 50 Al syringe

(Hamilton, Reno, NV, USA). The injector was left in

place for 30 s after solution delivery. Another two groups

of rats (n = 6 per group) were injected with L-NAME (30

mg/ml/kg) or saline (1 ml/kg) systemically into the

peritoneal cavity. All rats received an intraperitoneal

injection of LiCl (76 mg/kg) 30 min after each drug

injection. A group of rats (n = 6) received intraperitoneal
injections of saline twice with a 30-min interval included

as a control.

2.4. In situ hybridization

One hour after the lithium injection of all experimental

groups or the second saline injection of control group, rats

were rapidly anesthetized by CO2 gas and decapitated once

unresponsive. To minimize diurnal variation in plasma

corticosterone levels and circadian induction of ICER ex-

pression, all tissue was collected 2–4 h after lights-on.

Adrenal glands were dissected out and then fixed in phos-

phate-buffered 4% paraformaldehyde for 24 h. After cry-

oprotection in 30% sucrose for at least 24 h, adrenal glands

were sectioned at 40 Am thickness with a freezing, sliding

microtome. The adrenal sections were then processed for in

situ hybridization with c-Fos (a full-length 2.1 kb restriction

fragment; generous gift from Dr. Jim Eberwine) or ICER [a

166bp restriction fragment comprising the ICER-specific

portion of cAMP responsive element modulator (CREM)

cDNA; generous gift from Dr. Paolo Sassone-Corsi] cDNA

probes, as we previously described (Choi et al., 2003).

Tissue sections from different groups were hybridized

within the same vial, and exposed to film together on the

same microscope slide. Sections from different rats were

identified by cuts made in the adrenal gland during section-

ing. Thus, in situ hybridization was carried out on repre-

sentative members of each experimental group at the same

time under the identical conditions, allowing direct compar-

ison of mRNA expression.



Fig. 2. Relative optical densities of c-Fos or ICER in situ signals on X-ray

films. NN-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg) or saline was

intraperitoneally administrated 30 min prior to an intraperitoneal lithium

(0.15 M, 76 mg/kg) (n= 6). The adrenal glands were collected 1 h after

lithium chloride. For the control group, an intraperitoneal saline was given

at each injection time point (n= 6). (A) Lithium significantly increased c-

Fos mRNA level both in the medulla and the cortex, and L-NAME

pretreatment did not suppress the lithium effect. (B) Lithium-induced ICER

expression of the medulla, but not of the cortex, was attenuated by systemic

L-NAME pretreatment. *P< 0.05, **P < 0.01, ***P < 0.001 vs. saline/

saline; yP< 0.05 vs. saline/LiCl.

Fig. 3. Relative optical densities of c-Fos or ICER in situ signals on X-ray

films. Rats received an intracerebroventricle injection of NN-nitro-L-

arginine methyl ester (250 Ag/5 Al) or aseptic saline 30 min prior to an

intraperitoneal lithium (0.15 M, 76 mg/kg), were sacrificed 1 h after lithium

(n= 6). (A) Central L-NAME attenuated c-Fos induction in the medulla, but

not in the cortex. (B) Either the cortical or the medullary expression of

ICER was not affected by central L-NAME. *P < 0.05.
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2.5. Quantitative image analysis

Pixel density was quantitated from the films using a

custom software program (MindsEye 1.26 b, T. Houpt).

Light levels were adjusted to standardize gray levels of film

background and images were captured in a 10 mm� 7.5

mm frame. Densitometry was restricted to hand-drawn out-

lines of the adrenal cortex (fasciculata and reticulata layers)

or medulla. Messenger RNA expression level was deter-

mined by quantifying the mean relative optical density of

pixels with densities of at least 2 S.D. above the mean

density of the image background (‘mRNA pixels’). The

mean background value was subtracted from the mean

mRNA pixel values. For each rat, average pixel densities

were obtained from five adrenal sections. Individual mean

values for each region were then averaged across rats within

experimental groups.

Results are presented as the meanF S.E.M. Statistical

significance was determined by unpaired t-test or one-way
analysis of variance (ANOVA) followed by post-hoc Fish-

er’s PLSD test using StatView software (Abacus, Berkeley,

CA).
3. Results

3.1. Intraperitoneal L-NAME

Both c-Fos and ICER mRNA expression appeared to be

markedly increased in the adrenal gland by 1 h of intraper-

itoneal isotonic lithium, compared to the saline injected

controls (Fig. 1). ICER expression levels in the adrenal

cortex showed a big individual difference as Della Fazia et

al. (1998) reported (data not shown). Densitometric mea-

surement of the in situ signals on autoradiographic films

showed that lithium chloride significantly increases mRNA

levels of c-Fos and ICER in the medulla as well as in the

cortex (Fig. 2). Intraperitoneal L-NAME (30 mg/kg) pre-

treatment did not alter lithium-induced c-Fos expression

both in the cortex and the medulla (Fig. 2A), however,

lithium-induced ICER expression was attenuated by L-

NAME in the medulla, but not in the cortex (Fig. 2B).
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3.2. Intracerebroventricular L-NAME

The cortical expression of c-Fos/ICER induced by

lithium did not alter by an intracerebroventricular (i.c.v.)

pretreatment of L-NAME at a dose of 250 Ag, however,
lithium-induced c-Fos expression (Fig. 3A), but not ICER

(Fig. 3B), significantly decreased in the medulla by i.c.v.

L-NAME.
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4. Discussion

We demonstrated that not only the expression of induc-

ible cAMP early repressor (ICER), but also of c-Fos, is

markedly increased by intraperitoneal lithium in the adrenal

gland. ICER is the only inducible member of CREM, a

family of transcription factors, which bind to cAMP re-

sponse elements (CREs) in the promoter regions of genes

and potently inhibit CRE-mediated gene transcription (Sas-

sone-Corsi, 1998). CREM proteins have been shown to bind

to CRE elements in the c-Fos promoter and inhibit cAMP-

stimulated c-Fos transcription, leading to the proposal that

ICER may be responsible for terminating c-Fos transcription

(Foulkes et al., 1991; Mao et al., 1998; Spencer and Houpt,

2001). Together with our result, it is hypothesized that ICER

expression may correlate with c-Fos expression in lithium-

induced activation of the adrenal gland, however, further

study is required to prove it.

It has been reported that lithium chloride stimulates the

hypothalamic–pituitary–adrenal activation (Hennessy et

al., 1976; Sugawara et al., 1988) and induces the adrenal

expression of ICER, as a part of the hypothalamic–pitui-

tary–adrenal activation (Spencer et al., 2000). Gene ex-

pression and enzyme activity of neuronal nitric oxide

synthase (nNOS), which is responsible for producing nitric

oxide in the brain, is increased in the hypothalamus of

lithium-treated rats (Anai et al., 2001). Nitric oxide has

been reported to play a stimulatory role in the hypothalam-

ic–pituitary–adrenal activation (Costa et al., 1993; Karanth

et al., 1993; Ota et al., 1993; Rivier, 1994, 2003; Lee et al.,

1999; Seo and Rivier, 2001). Thus, we hypothesized that

NN-nitro-L-arginine methyl ester (L-NAME), a nitric oxide

synthase (NOS) inhibitor, may suppress lithium-induced

expression of c-Fos and ICER in the adrenal cortex,

possibly as a part of its suppressive effect on lithium-

induced activation of the hypothalamic–pituitary–adrenal

axis. However, L-NAME did not suppress lithium-induced

expression of c-Fos or ICER in the adrenal cortex, regard-

less the administration route of drug. The dose and treat-

ment time of central or systemic L-NAME used in this

study were shown by previous reports to be sufficient to

suppress the effects of brain nitric oxide (De Paula et al.,

2000; Kadekaro et al., 2000; Chen and Chang, 2002).

Therefore, it can be concluded that nitric oxide may not

be involved in lithium-induced activation of the hypotha-

lamic–pituitary–adrenal axis, otherwise, at least, not in
lithium-induced c-Fos and ICER expression in the adrenal

cortex per se.

We showed that intraperitoneal lithium induces both c-

Fos and ICER expression in the adrenal medulla. It has been

reported that a single injection of lithium chloride alters

norepinephrine levels in the brain (Otero Losada and Rubio,

1984, 1992), and increases the plasma epinephrine, norepi-

nephrine, and glucose levels (Chaouloff et al., 1992; Fontela

et al., 1986, 1990). Lithium administration activates the

adrenomedullary catecholaminergic system (Fontela et al.,

1986; O’Conner et al., 1988; Terao et al., 1992), increases

gene expression of tyrosine hydroxylase (TH), the rate

limiting enzyme of catecholamine biosynthesis, likely

through activator protein-1 transcription factor pathway

(Chen et al., 1998). ICER expression regulates trans-synap-

tic induction of TH gene in the adrenal medulla of reserpine

treated rat (Tinti et al., 1996; Trocme et al., 2001), and was

proposed to be responsible for terminating c-Fos transcrip-

tion (Foulkes et al., 1991; Mao et al., 1998; Spencer and

Houpt, 2001). Additionally, Nankova et al. (2000) reported

that a transient expression of c-Fos occurs in the adrenal

medulla after a single episode of immobilization stress, and

suggested that the c-Fos expression may be related to the

up-regulation of catecholamine synthetic activity by the

stress. Taken together with our result, it is suggested that

lithium, as an interoceptive stressor, may activate the

sympathetic adrenomedullary system as well, and that the

lithium-induced sympathetic adrenomedullary activation

may include c-Fos and ICER expression in the medulla.

Interestingly, lithium-induced medullary expression of c-Fos

was attenuated by central L-NAME, and ICER by systemic

L-NAME, in this study. This suggests that nitric oxide may

be involved in lithium-induced activation of the sympathetic

adrenomedullary system, or at least, in lithium-induced

medullary expression of c-Fos and ICER per se. However,

lithium-induced ICER appears to be differently regulated

from c-Fos expression in the adrenal medulla. In addition, a

possible local effect of intraperitoneal lithium on the adrenal

expression of c-Fos and ICER cannot be ruled out, and

further study is required to determine the mechanism by

which lithium activates the sympathetic adrenomedullary

system.

It appears that the effect of L-NAME on lithium-induced

immediate early gene expressions in the adrenal medulla

differs by its administration route. That is, the central L-

NAME attenuated lithium-induced c-Fos, but not ICER, and

the systemic L-NAME vice versa. This can be explained, at

least partly, by the effect of L-NAME on the peripheral nitric

oxide system. It was reported that nitric oxide synthase

inhibitors such as L-NAME, N-monomethyl-L-arginine, and

NN-nitro-L-arginine prevent the relaxation of the gastroin-

testinal smooth muscles induced by electrical stimulation

(Desai et al., 1991; Tottrup et al., 1991). It is possible that

systemic L-NAME may induce gastrointestinal constriction

and/or peristaltic dysregulation, either of which may serve

as a salient gastrointestinal cue, perhaps, influencing the
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lithium effect on sympathetic adrenomedullary system,

additionally to its central action.

In conclusion, understanding the activation of immedi-

ate-early genes such as c-Fos and ICER in response to a

single lithium chloride injection is an important first step to

understand the long-term changes in gene expression eli-

cited by lithium, which is involved in its therapeutic or toxic

effect. The site of action and mechanism by which lithium

acutely stimulates or chronically modulates the hypothalam-

ic–pituitary–adrenal activity, perhaps sympathetic outflow

as well, remains to be fully elucidated.
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