Eukaryotic Gene Regulation

- 1. RNA polymerase only works with transcription initiation complex bound to gene.
- 2. Gene expression is controlled by **upstream** promoter elements and transcription factors (i.e. not by blockade of the RNA polymerase.)

1

1. Transcription initiation complex

Almost all eukaryotic genes have TATA boxes just before transcription start.

Eukaryotic RNA polymerase only binds to DNA after transcription factors bind to the TATA box.

3

2. Transcription Factor Binding

Genes are turned off and on by binding of transcription factors to promoter control elements.

e.g. estrogen receptor in presence of estrogen binds to estrogen response element

Notes

- Transcription factors can be positive or negative, turning genes on or off.
- There are 1000's of transcription factors in each cell, and 1000's of control elements in each promoter of each gene.
- Transcription factors are proteins too, so they are encoded by genes which are regulated by transcription factors too (genetic networks.)
- The phenotype of a cell is determined by the transcription factors expressed in a cell: estrogen responsive cells express the E-receptor, other cells do not.

Combine the promoter for one gene with the coding region of a different gene.

Can be used to:

alter phenotype of a cell

increase production of a specific protein

label cells using a reporter gene.

Example:

Add a gene with an estrogen-sensitive promoter that controls green fluorescent protein expression.

If cell expresses estrogen-regulated protein, it will glow in the dark.

